Skip to main content
Log in

Identification of Initial Critical Resolved Shear Stresses Using of a Two-Level Model of Inelastic Deformation

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The problem of identifying the initial critical resolved shear stresses (CRSS) of slip systems is considered in the framework of a two-level statistical model of inelastic deformation. We propose a three-stage method for determining critical stresses. The problem is solved on the basis of an experimental data set that includes the ‘‘\({{{\sigma}}}-{{{\varepsilon}}}\)’’ diagrams for a polycrystal (subjected to uniaxial loading at different temperatures) and the anisotropic elastic moduli of single crystals. Analysis of the experimental loading diagrams makes it possible to determine the yield strength at the macrolevel. Using the two-level model, an optimization problem is formulated to determine the CRSS values corresponding to the experimentally established yield strength of a polycrystalline macrosample at a fixed temperature. The obtained CRSS are approximated by an exponential temperature dependence; there is good agreement between this approximation and the considered critical stresses. The problem parameters are determined for a copper polycrystal. The obtained results can be used to investigate inelastic deformation by means of multilevel models, in which the activation of slip systems is determined by the the Schmid law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. Z. Gronostajski et al., ‘‘Recent development trends in metal forming,’’ Arch. Civil Mech. Eng. 19, 898–941 (2019). https://doi.org/10.1016/j.acme.2019.04.005

    Article  Google Scholar 

  2. D. Banabic, Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation (Springer, Berlin, 2010). https://doi.org/10.1007/978-3-540-88113-1

  3. A. Rollett, G. S. Rohrer, and J. Humphreys, Recrystallization and Related Annealing Phenomena (Elsevier, Oxford, 2017).

    Google Scholar 

  4. S. L. Semiatin, ‘‘An overview of the thermomechanical processing of \({\alpha}\)/\({\beta}\) titanium alloys: Current status and future research opportunities,’’ Metall. Mater. Trans. A 51, 2593–2625 (2020). https://doi.org/10.1007/s11661-020-05625-3

    Article  Google Scholar 

  5. Z. Nasiri, S. Ghaemifar, M. Naghizadeh, and H. Mirzadeh, ‘‘Thermal mechanisms of grain refinement in steels: A review,’’ Met. Mater. Int. 27, 2078–2094 (2021). https://doi.org/10.1007/s12540-020-00700-1

    Article  Google Scholar 

  6. R. Z. Valiev, B. Straumal, and T. G. Langdon, ‘‘Using severe plastic deformation to produce nanostructured materials with superior properties,’’ Ann. Rev. Mater. Res. 52, 357–382 (2022). https://doi.org/10.1146/annurev-matsci-081720-123248

    Article  Google Scholar 

  7. M. Diehl, J. Niehuesbernd, and E. Bruder, ‘‘Quantifying the contribution of crystallographic texture and grain morphology on the elastic and plastic anisotropy of BCC steel,’’ Metals 9, 1252 (2019). https://doi.org/10.3390/met9121252

    Article  Google Scholar 

  8. O. Zinovieva, V. Romanova, A. Zinoviev, O. Nekhorosheva, and R. Balokhonov, ‘‘Elastic properties of additively manufactured steel produced with different scan strategies,’’ Int. J. Mech. Sci. 244, 108089 (2023). https://doi.org/10.1016/j.ijmecsci.2022.108089

    Article  Google Scholar 

  9. F. Roters, P. Eisenlohr, L. Hantcherli, et al., ‘‘Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications,’’ Acta Mater. 58, 1152–1211 (2010). https://doi.org/10.1016/j.actamat.2009.10.058

    Article  Google Scholar 

  10. P. V. Trusov and A. I. Shveykin, Multilevel Models of Mono- and Polycrystalline Materials: Theory, Algorithms, Application Examples (Sib. Otdel. RAN, Novosibirsk, 2019) [in Russian]. https://doi.org/10.15372/MULTILEVEL2019TPV

  11. P. Trusov, N. Kondratev, and A. Podsedertsev, ‘‘Grain structure rearrangement by means the advanced statistical model modified for describing dynamic recrystallization,’’ Metals 13 (1), 113 (2023). https://doi.org/10.3390/met13010113

    Article  Google Scholar 

  12. S. Q. Zhu and S. P. Ringer, ‘‘On the role of twinning and stacking faults on the crystal plasticity and grain refinement in magnesium alloys,’’ Acta Mater. 144, 365–375 (2018). https://doi.org/10.1016/j.actamat.2017.11.004

    Article  Google Scholar 

  13. T. Park, L. G. Hector, Jr., X. Hu, et al., ‘‘Crystal plasticity modeling of 3rd generation multi-phase AHSS with martensitic transformation,’’ Int. J. Plast. 120, 1–46 (2019). https://doi.org/10.1016/j.ijplas.2019.03.010

    Article  Google Scholar 

  14. K. A. Babu, T. S. Prithiv, A. Gupta, and S. Mandal, ‘‘Modeling and simulation of dynamic recrystallization in super austenitic stainless steel employing combined cellular automaton, artificial neural network and finite element method,’’ Comput. Mater. Sci. 195, 110482 (2021). https://doi.org/10.1016/j.commatsci.2021.110482

    Article  Google Scholar 

  15. Z. Feng, R. Pokharel, S. C. Vogel, et al., ‘‘Crystal plasticity modeling of strain-induced martensitic transformations to predict strain rate and temperature sensitive behavior of 304 L steels: Applications to tension, compression, torsion, and impact,’’ Int. J. Plast. 156, 103367 (2022). https://doi.org/10.1016/j.ijplas.2022.103367

    Article  Google Scholar 

  16. F. Nagashima, Y. Nakagawa, and M. Yoshino, ‘‘Numerical analysis of subgrain formation during metal cutting and rolling based on the crystal plasticity theory,’’ Int. J. Mater. Forming 15, 9 (2022). https://doi.org/10.1007/s12289-022-01652-0

    Article  Google Scholar 

  17. M. Yaghoobi, Z. Chen, A. D. Murphy-Leonard, et al., ‘‘Deformation twinning and detwinning in extruded Mg-4Al: In-situ experiment and crystal plasticity simulation,’’ Int. J. Plast. 155, 103345 (2022). https://doi.org/10.1016/j.ijplas.2022.103345

    Article  Google Scholar 

  18. P. Trusov, N. Kondratev, and A. Podsedertsev, ‘‘Description of dynamic recrystallization by means of an advanced statistical multilevel model: Grain structure evolution analysis,’’ Crystals 12, 653 (2022). https://doi.org/10.3390/cryst12050653

    Article  Google Scholar 

  19. S. R. Kalidindi, J. R. Houskamp, M. Lyons, and B. L. Adams, ‘‘Microstructure sensitive design of an orthotropic plate subjected to tensile load,’’ Int. J. Plast. 20, 1561–1575 (2004). https://doi.org/10.1016/j.ijplas.2003.11.007

    Article  MATH  Google Scholar 

  20. M. Yuan, S. Paradiso, B. Meredig, and S. R. Niezgoda, ‘‘Machine learning-based reduce order crystal plasticity modeling for ICME applications,’’ Integr. Mater. Manuf. Innov. 7, 214–230 (2018). https://doi.org/10.1007/s40192-018-0123-x

    Article  Google Scholar 

  21. K. V. Ostapovich, P. V. Trusov, and A. Yu. Yants, ‘‘Prediction of crystallographic texture formation in polycrystalline samples under severe plastic deformation based on a two-level statistical elasto-viscoplastic model,’’ Phys. Mesomech. 24, 225–236 (2021). https://doi.org/10.1134/S1029959921030012

    Article  Google Scholar 

  22. M. Bertin, C. Du, J. P. Hoefnagels, and F. Hild, ‘‘Crystal plasticity parameter identification with 3D measurements and integrated digital image correlation,’’ Acta Mater. 116, 321–331 (2016). https://doi.org/10.1016/j.actamat.2016.06.039

    Article  Google Scholar 

  23. N. Zhang and W. Tong, ‘‘An experimental study on grain deformation and interactions in an Al-0.5% Mg multicrystal,’’ Int. J. Plast. 20, 523–542 (2004). https://doi.org/10.1016/S0749-6419(03)00100-1

    Article  MATH  Google Scholar 

  24. A. Chakraborty and P. Eisenlohr, ‘‘Evaluation of an inverse methodology for estimating constitutive parameters in face-centered cubic materials from single crystal indentations,’’ Eur. J. Mech. A 66, 114–124 (2017). https://doi.org/10.1016/j.euromechsol.2017.06.012

    Article  MathSciNet  MATH  Google Scholar 

  25. J. K. Engels, N. Vajragupta, and A. Hartmaier, ‘‘Parameterization of a non-local crystal plasticity model for tempered lath martensite using nanoindentation and inverse method,’’ Front. Mater. 6, 247 (2019). https://doi.org/10.3389/fmats.2019.00247

    Article  Google Scholar 

  26. L. Anand, ‘‘Single-crystal elasto-viscoplasticity: Application to texture evolution in polycrystalline metals at large strains,’’ Comput. Methods Appl. Mech. Eng. 193, 5359–5383 (2004). https://doi.org/10.1016/j.cma.2003.12.068

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Sedighiani, M. Diehl, K. Traka, F. Roters, J. Sietsma, and D. Raabe, ‘‘An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress-strain curves,’’ Int. J. Plast. 134, 102779 (2020). https://doi.org/10.1016/j.ijplas.2020.102779

    Article  Google Scholar 

  28. K. Frydrych, A. Jarzcebska, S. Virupakshi, et al., ‘‘Texture-based optimization of crystal plasticity parameters: Application to zinc and its alloy,’’ Metall. Mater. Trans. A 52, 3257–3273 (2021). https://doi.org/10.1007/s11661-021-06285-7

    Article  Google Scholar 

  29. D. J. Savage, Z. Feng, and M. Knezevic, ‘‘Identification of crystal plasticity model parameters by multi-objective optimization integrating microstructural evolution and mechanical data,’’ Comput. Methods Appl. Mech. Eng. 379, 113747 (2021). https://doi.org/10.1016/j.cma.2021.113747

    Article  MathSciNet  MATH  Google Scholar 

  30. B. M. Schroeter and D. L. McDowell, ‘‘Measurement of deformation fields in polycrystalline OFHC copper,’’ Int. J. Plast. 19, 1355–1376 (2003). https://doi.org/10.1016/S0749-6419(02)00040-2

    Article  MATH  Google Scholar 

  31. O. Diard, S. Leclercq, G. Rousselier, and G. Cailletaud, ‘‘Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity: Application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries,’’ Int. J. Plast.21, 691–722 (2005). https://doi.org/10.1016/j.ijplas.2004.05.017

    Article  MATH  Google Scholar 

  32. Z. Chen and S. H. Daly, ‘‘Active slip system identification in polycrystalline metals by digital image correlation (DIC),’’ Exp. Mech. 57, 115–127 (2017). https://doi.org/10.1007/s11340-016-0217-3

    Article  Google Scholar 

  33. M. Knezevic, I. J. Beyerlein, M. L. Lovato, C. N. Tomé, A. W. Richards, and R. J. McCabe, ‘‘A strain-rate and temperature dependent constitutive model for BCC metals incorporating non-Schmid effects: Application to tantalum–tungsten alloy,’’ Int. J. Plast. 62, 93–104 (2014). https://doi.org/10.1016/j.ijplas.2014.07.007

    Article  Google Scholar 

  34. A. Stukowski, D. Cereceda, T. D. Swinburne, and J. Marian, ‘‘Thermally-activated non-Schmid glide of screw dislocations in W using atomistically-informed kinetic Monte Carlo simulations,’’ Int. J. Plast. 65, 108–130 (2015). https://doi.org/10.1016/j.ijplas.2014.08.015

    Article  Google Scholar 

  35. R. Gr\(\ddot{\rm{o}}\)ger, ‘‘Symmetry-adapted single crystal yield criterion for non-Schmid materials,’’ Int. J. Plast. 146, 103101 (2021). https://doi.org/10.1016/j.ijplas.2021.103101

    Article  Google Scholar 

  36. Y. Guo, D. M. Collins, E. Tarleton, F. Hofmann, A. J. Wilkinson, and T. B. Britton, ‘‘Dislocation density distribution at slip band-grain boundary intersections,’’ Acta Mater. 182, 172–183 (2020). https://doi.org/10.1016/j.actamat.2019.10.031

    Article  Google Scholar 

  37. J. C. M. Li, C. R. Feng, and B. B. Rath, ‘‘Emission of dislocations from grain boundaries and its role in nanomaterials,’’ Crystals 11, 41 (2020). https://doi.org/10.3390/cryst11010041

    Article  Google Scholar 

  38. N. Hansen, ‘‘Hall-Petch relation and boundary strengthening,’’ Scr. Mater. 51, 801–806 (2004). https://doi.org/10.1016/j.scriptamat.2004.06.002

    Article  Google Scholar 

  39. R. W. Armstrong, ‘‘Engineering science aspects of the Hall–Petch relation,’’ Acta Mech. 225, 1013–1028 (2014). https://doi.org/10.1007/s00707-013-1048-2

    Article  Google Scholar 

  40. R. J. Asaro, ‘‘Micromechanics of crystals and polycrystals,’’ Adv. Appl. Mech. 23, 1–115 (1983). https://doi.org/10.1016/S0065-2156(08)70242-4

    Article  Google Scholar 

  41. W. A. Counts, M. V. Braginsky, C. C. Battaile, and E. A. Holm, ‘‘Predicting the Hall–Petch effect in fcc metals using non-local crystal plasticity,’’ Int. J. Plast. 24, 1243–1263 (2008). https://doi.org/10.1016/J.IJPLAS.2007.09.008

    Article  MATH  Google Scholar 

  42. M. T. Andani, A. Lakshmanan, V. Sundararaghavan, J. Allison, and A. Misra, ‘‘Quantitative study of the effect of grain boundary parameters on the slip system level Hall–Petch slope for basal slip system in Mg-4Al,’’ Acta Mater. 200, 148–161 (2020). https://doi.org/10.1016/j.actamat.2020.08.079

    Article  Google Scholar 

  43. A. Raj, R. K. Verma, and P. K. Singh, ‘‘Experimental and numerical investigation of differential hardening of cold rolled steel sheet under non-proportional loading using biaxial tensile test,’’ Int. J. Plast. 154, 103297 (2022). https://doi.org/10.1016/j.ijplas.2022.103297

    Article  Google Scholar 

  44. L. Blaz, T. Sakai, and J. J. Jonas, ‘‘Effect of initial grain size on dynamic recrystallization of copper,’’ Met. Sci. 17, 609–616 (1983). https://doi.org/10.1179/030634583790420448

    Article  Google Scholar 

  45. P. Trusov, A. Shveykin, and N. Kondratev, ‘‘Some issues on crystal plasticity models formulation: Motion decomposition and constitutive law variants,’’ Crystals 11, 1392 (2021). https://doi.org/10.3390/cryst11111392

    Article  Google Scholar 

  46. Y. A. Chang and L. Himmel, ‘‘Temperature dependence of the elastic constants of Cu, Ag, and Au above room temperature,’’ J. Appl. Phys. 37, 3567–3572 (1966). https://doi.org/10.1063/1.1708903

    Article  Google Scholar 

  47. G. Zhou, Z. Li, D. Li, Y. Peng, H. S. Zurob, and P. Wu, ‘‘A polycrystal plasticity based discontinuous dynamic recrystallization simulation method and its application to copper,’’ Int. J. Plast. 91, 48–6 (2017). https://doi.org/10.1016/j.ijplas.2017.01.001

    Article  Google Scholar 

  48. I. J. Beyerlein and C. N. Tomé, ‘‘A dislocation-based constitutive law for pure Zr including temperature effects,’’ Int. J. Plast. 24, 867–895 (2008). https://doi.org/10.1016/j.ijplas.2007.07.017

    Article  MATH  Google Scholar 

Download references

Funding

The study was carried out with a financial support from the Ministry of Education and Science of the Russian Federation as part of the implementation of the national project ‘‘Science and Universities’’ (the state task fulfillment in the laboratory of multilevel structural and functional materials modeling, project no. FSNM-2021-0012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. S. Kondratev, P. V. Trusov or D. S. Bezverkhy.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratev, N.S., Trusov, P.V. & Bezverkhy, D.S. Identification of Initial Critical Resolved Shear Stresses Using of a Two-Level Model of Inelastic Deformation. Lobachevskii J Math 44, 2306–2316 (2023). https://doi.org/10.1134/S1995080223060240

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223060240

Keywords:

Navigation