Skip to main content
Log in

High-speed Liquid Impact on a Liquid Surface and a Wetted Wall

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The high-speed liquid impact on a dry wall is known to result in appearance of a shock wave propagating up the impacting liquid from the wall. In the first stage this wave remains attached to the wall whereas in the second stage it detaches from the wall, leading to lateral jetting of the liquid compressed by the shock wave. In the first stage the pressure maximum on the wall, just like the extremes of other impact characteristics (the compressed liquid velocity, the shock wave slope, etc.), is attained at the shock wave edge. In the course of the first stage this maximum grows although in the second stage its magnitude gradually decreases. In the present work, the pressure maxima and the extremes of other compressed liquid characteristics achieved in the course of the first stages of liquid impact on a liquid surface and a wall wetted by a thin liquid film are studied, using known Heymann’s theory (J. Appl. Phys. 40, 1969) originally devoted to the liquid impact on a dry wall. Corresponding algebraic expressions for the compressed liquid characteristics at the impact area edge in the course of the first stage of liquid impact on a liquid surface and a wetted wall are derived. A variant with water as the involved liquids has been considered in detail. It is found that the impact characteristics in the case of impact on a liquid surface under the impact Mach number up to 1 are quite close to their values in the case of impact on a dry wall with half the impact angle and half the Mach number. In the case of a wall wetted with a very thin liquid film, the impact characteristics are close to those for a dry wall. It is shown that the derived expressions for the impact characteristics are useful for construction of the shock wave fronts during the first stage of liquid impact onto a liquid and a wetted wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

REFERENCES

  1. F. J. Heymann, ‘‘Erosion by liquids,’’ Mach. Des. 10, 118–124 (1970).

    Google Scholar 

  2. W. F. Adler, ‘‘The mechanics of liquid impact,’’ in Erosion, Ed. by C. M. Preece (Academic, New York, 1979), pp. 127–183.

    Google Scholar 

  3. M. E. Ibrahim and M. Medraj, ‘‘Water droplet erosion of wind turbine blades: Mechanics, testing, modeling and future perspectives,’’ Materials 13, 157-1–33 (2020).

  4. J. Xiong, S. Koshizuka, and M. Sakai, ‘‘Numerical analysis of droplet impingement using the moving particle semi-implicit method,’’ J. Nucl. Sci. Technol. 47, 314–321 (2010).

    Article  Google Scholar 

  5. K. Fujisawa, T. Yamagata, and N. Fujisawa, ‘‘Damping effect on impact pressure from liquid droplet impingement on wet wall,’’ Ann. Nucl. Energy 121, 260–268 (2018).

    Article  Google Scholar 

  6. M. Kornfeld and L. Suvorov, ‘‘On the destructive action of cavitation,’’ J. Appl. Phys. 15, 495–506 (1944).

    Article  Google Scholar 

  7. T. B. Benjamin and A. T. Ellis, ‘‘The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries,’’ Phil. Trans. R. Soc. London, Ser. A 260 (1110), 221–240 (1966).

    Google Scholar 

  8. N. A. Hawker and Y. Ventikos, ‘‘Interaction of a strong shockwave with a gas bubble in a liquid medium: A numerical study,’’ J. Fluid Mech. 701, 59–97 (2012).

    Article  MATH  Google Scholar 

  9. T. Trummler, S. Bryngelson, K. Schmidmayer, S. Schmidt, T. Colonius, and N. Adams, ‘‘Near-surface dynamics of a gas bubble collapsing above a crevice,’’ J. Fluid Mech. 899, A16 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. B. Lesser and J. E. Field, ‘‘The impact of compressible liquids,’’ Ann. Rev. Fluid Mech. 15, 97–122 (1983).

    Article  Google Scholar 

  11. W. Wu, Q. Liu, and B. Wang,‘‘Curved surface effect on high-speed droplet impingement,’’ J. Fluid Mech. 909, A7 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  12. F. P. Bowden and J. E. Field, ‘‘The brittle fracture of solids by liquid impact, by solid impact and by shock,’’ Proc. R. Soc. London, Ser. A 282, 331–526 (1964).

    Article  Google Scholar 

  13. J. H. Brunton, ‘‘High speed liquid impact,’’ Phil. Trans. R. Soc. London, Ser. A 260, 79–85 (1966).

    Google Scholar 

  14. M. C. Rochester and J. H. Brunton, ‘‘Surface pressure distribution during drop impingement,’’ in Proceedings of 4th International Conference on Rain Erosion and Associated Phenomena, Meersburg, Germany, Ed. by A. A. Fyall and R. B. King (R. Aircraft Establishm., Farnborough, UK, 1974), pp. 371–393.

  15. J. E. Field, M. B. Lesser, and J. P. Dear, ‘‘Studies of two-dimensional liquid wedge impact and their relevance to liquid-drop impact problems,’’ Proc. R. Soc. London, Ser. A 401, 225–249 (1985).

    Article  Google Scholar 

  16. N. K. Bourne, ‘‘On impacting liquid jets and drops onto polymethylmethacrylate targets,’’ Proc. R. Soc. London, Ser. A 461, 1129–1145 (2005).

    Google Scholar 

  17. F. J. Heymann, ‘‘High-speed impact between a liquid drop and a solid surface,’’ J. Appl. Phys. 40, 5113–5122 (1969).

    Article  Google Scholar 

  18. M. B. Lesser, ‘‘Analytic solutions of liquid-drop impact problems,’’ Proc. R. Soc. London, Ser. A 377, 289–308 (1981).

    Article  MathSciNet  Google Scholar 

  19. A. A. Korobkin, ‘‘Asymptotic theory of liquid-solid impact,’’ Phil. Trans. R. Soc. London, Ser. A 355, 507–522 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  20. K. K. Haller, Y. Ventikos, D. Poulikakos, and P. Monkewitz, ‘‘Computational study of high-speed liquid droplet impact,’’ J. Appl. Phys. 92, 2821–2828 (2002).

    Article  Google Scholar 

  21. R. Li, H. Ninokata, and M. Mori, ‘‘A numerical study of impact force caused by liquid droplet impingement onto a rigid wall,’’ Prog. Nucl. Energy 53, 881–885 (2011).

    Article  Google Scholar 

  22. T. Sanada, K. Ando, and T. A. Colonius, ‘‘A computational study of high-speed droplet impact,’’ Fluid Dyn. Mater. Process. 7, 329–340 (2011).

    Google Scholar 

  23. J.-B. G. Hwang and F. G. Hammitt, ‘‘High-speed impact between curved liquid surface and rigid flat surface,’’ J. Fluids Eng. 99, 396–404 (1977).

    Article  Google Scholar 

  24. A. A. Aganin, M. A. Il’gamov, and T. S. Guseva, ‘‘Influence of the shape of the jet head on its impact on a wetted wall,’’ J. Appl. Mech. Tech. Phys. 60, 644–649 (2019).

    Article  MathSciNet  Google Scholar 

  25. F. Huang, Sh. Li, Y. Zhao, and Y. Liu, ‘‘Study on lateral jetting range during an arc-curved jet impacting nonplanar solid surfaces,’’ J. Fluids Eng. 140, 101201 (2018).

    Article  Google Scholar 

  26. K. Fujisawa, T. Yamagata, and N. Fujisawa, ‘‘Liquid droplet impingement erosion on groove roughness,’’ Nucl. Eng. Des. 330, 368–376 (2018).

    Article  Google Scholar 

  27. C. B. Burson-Thomas, R. Wellman, T. J. Harvey, and R. J. K. Wood, ‘‘Water droplet erosion of aeroengine fan blades: The importance of form,’’ Wear 426–427, 507–517 (2019).

    Article  Google Scholar 

  28. J. E. Field, J.-J. Camus, M. Tinguely, D. Obreschkow, and M. Farhat, ‘‘Cavitation in impacted drops and jets and the effect on erosion damage thresholds,’’ Wear 290–291, 154–160 (2012).

    Article  Google Scholar 

  29. T. Kondo and K. Ando, ‘‘One-way-coupling simulation of cavitation accompanied by high-speed droplet impact,’’ Phys. Fluids 28, 033303 (2016).

    Article  Google Scholar 

  30. W. Wu, G. Xiang, and B. Wang, ‘‘On high-speed impingement of cylindrical droplets upon solid wall considering cavitation effects,’’ J. Fluid Mech. 857, 851–877 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  31. W. Johnson and G. W. Vickers, ‘‘Transient stress distribution caused by water-jet impact,’’ J. Mech. Eng. Sci. 15, 302–310 (1973).

    Article  Google Scholar 

  32. R. J. Hand, J. E. Field, and D. Townsend, ‘‘The use of liquid jets to simulate angled drop impact,’’ J. Appl. Phys. 70, 7111–7118 (1991).

    Article  Google Scholar 

  33. A. V. Chizhov and A. A. Schmidt, ‘‘Impact of high-velocity drop on an obstacle,’’ Tech. Phys. 45, 1529–1537 (2000).

    Article  Google Scholar 

  34. J. E. Field, J. P. Dear, and J. E. Ogren, ‘‘The effects of target compliance on liquid drop impact,’’ J. Appl. Phys. 65, 533–540 (1989).

    Article  Google Scholar 

  35. P. A. Lush, ‘‘Impact of a liquid mass on a perfectly plastic solid,’’ J. Fluid Mech. 135, 373–387 (1983).

    Article  MATH  Google Scholar 

  36. J. H. Brunton,‘‘Erosion by liquid shock,’’ in Proceedings of 2nd International Conference on Rain Erosion and Allied Phenomena, Meersburg, Germany, Ed. by A. A. Fyall and R. B. King (R. Aircraft Establishm., Farnborough, UK, 1967), pp. 535–560.

  37. H. H. Shi, J. E. Field, and C. S. J. Pickles, ‘‘High speed liquid impact onto wetted solid surfaces,’’ J. Fluids Eng. 116, 345–348 (1994).

    Article  Google Scholar 

  38. J. Xiong, S. Koshizuka, and M. Sakai, ‘‘Investigation of droplet impingement onto wet walls based on simulation using particle method,’’ J. Nucl. Sci. Technol. 48, 145–153 (2011).

    Article  Google Scholar 

  39. H. Sasaki, N. Ochiai, and Y. Iga, ‘‘Numerical analysis of damping effect of liquid film on material in high speed liquid droplet impingement,’’ Int. J. Fluid Mach. Syst. 9, 57–65 (2016).

    Article  Google Scholar 

  40. A. A. Aganin and T. S. Guseva, ‘‘Liquid jet impact on a wet wall,’’ Eur. J. Mech. B: Fluids 79, 141–150 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Marzbali and A. Dolatabadi, ‘‘High-speed droplet impingement on dry and wetted substrates,’’ Phys. Fluids 32, 112101 (2020).

    Article  Google Scholar 

  42. J. M. Walsh, R. G. Shreffler, and F. J. Willig, ‘‘Limiting conditions for jet formation in high velocity collisions,’’ J. Appl. Phys. 24, 349–359 (1953).

    Article  Google Scholar 

  43. F. J. Heymann, ‘‘On the shook wave velocity and impact pressure in high-speed liquid-solid impact,’’ J. Basic Eng. 90, 400–402 (1968).

    Article  Google Scholar 

  44. G. Whitham, ‘‘A new approach to problems of shock dynamics. Part I: Two-dimensional problems,’’ J. Fluid Mech. 2, 145–171 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  45. R. I. Nigmatulin and R. K. Bolotnova, ‘‘Wide-range equation of state of water and steam: Simplified form,’’ High Temp. 49, 303–306 (2011).

    Article  Google Scholar 

  46. A. A. Aganin and T. S. Guseva, ‘‘Numerical simulation of liquid mass collision with a wall,’’ Progr. Comput. Fluid Dynam. Int. J. 19, 293–306 (2019).

    Article  MathSciNet  Google Scholar 

  47. K. Takizawa, T. Yabe, Y. Tsugawa, T. E. Tezduyar, and H. Mizoe, ‘‘Computation of free-surface flows and fluid-object interactions with the CIP method based on adaptive meshless Soroban grids,’’ Comput. Mech. 40, 167–183 (2007).

    Article  MATH  Google Scholar 

Download references

Funding

The present study was supported by the Russian Science Foundation (grant no. 21-11-00100). The author is thankful to Dr. T.S. Guseva for performing numerical calculations and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Aganin.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aganin, A.A. High-speed Liquid Impact on a Liquid Surface and a Wetted Wall. Lobachevskii J Math 43, 2029–2045 (2022). https://doi.org/10.1134/S1995080222110038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222110038

Keywords:

Navigation