Skip to main content
Log in

Influence of a Thin Liquid Layer on the Impact of a Jet upon a Wall

  • MECHANICS OF MACHINES
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

The numerical results of studying the impact of an axisymmetric liquid jet upon a flat rigid wall covered by a layer of similar liquid are presented. Primary attention is paid to the effect the layer thickness on the wall has on loading in the range of impact velocities 150–350 m/s. The loading character is studied, and the estimations of wall pressure are obtained in the case of a small layer thickness, which are topical for the applications associated with the droplet and cavitation erosion. It is shown that under the conditions considered the known results of two-dimensional modeling overestimate the maximum of the average pressure on the wall by 1.8 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Heymann, F.J., Erosion by liquids, Mach. Des., 1970, vol. 10, p. 118.

    Google Scholar 

  2. Xiong, J., Koshizuka, S., Sakai, M., and Ohshima, H., Investigation on droplet impingement erosion during steam generator tube failure accident, Nucl. Eng. Des., 2012, vol. 249, p. 132.

    Article  Google Scholar 

  3. Kornfeld, M. and Suvorov, L., On the destructive action of cavitation, J. Appl. Phys., 1944, vol. 15, p. 495.

    Article  Google Scholar 

  4. Hattori, S. and Takinami, M., Comparison of cavitation erosion rate with liquid impingement erosion rate, Wear, 2010, vol. 269, p. 310.

    Article  Google Scholar 

  5. Lesser, M.B. and Field, J.E., The impact of compressible liquids, Ann. Rev. Fluid Mech., 1983, vol. 15, p. 97.

    Article  Google Scholar 

  6. Field, J.E., Camus, J.-J., Tinguely, M., Obreschkow, D., and Farhat, M., Cavitation in impacted drops and jets and the effect on erosion damage thresholds, Wear, 2012, vol. 290, p. 154.

    Article  Google Scholar 

  7. Bourne, N.K., On impacting liquid jets and drops onto polymethylmethacrylate targets, Proc. R. Soc. A, 2005, vol. 461, p. 1129.

    Article  Google Scholar 

  8. Rein, M., Phenomena of liquid drop impact on solid and liquid surfaces, Fluid Dyn. Res., 1993, vol. 12, p. 61.

    Article  Google Scholar 

  9. Fujisawa, K., Yamagata, T., and Fujisawa, N., Damping effect on impact pressure from liquid droplet impingement on wet wall, Ann. Nucl. Energy, 2018, vol. 121, pp. 260–268.

    Article  Google Scholar 

  10. Heymann, F.J., High-speed impact between a liquid drop and a solid surface, J. Appl. Phys., 1969, vol. 40, no. 13, p. 5113.

    Article  Google Scholar 

  11. Haller, K.K., Ventikos, Y., Poulikakos, D., and Monkewitz, P., Computational study of high-speed liquid droplet impact, J. Appl. Phys., 2002, vol. 92, no. 5, p. 2821.

    Article  Google Scholar 

  12. Chizhov, A.V. and Shmidt, A.A., Impact of a high velocity drop on an obstacle, Tech. Phys., 2000, vol. 45, no. 12, pp. 1529–1537.

    Article  Google Scholar 

  13. Sanada, T., Ando, K., and Colonius, T., A computational study of high-speed droplet impact, FDMP, 2011, vol. 7, no. 4, p. 329.

    Google Scholar 

  14. Xiong, J., Koshizuka, S., and Sakai, M., Numerical analysis of droplet impingement using the moving particle semi-implicit method, J. Nucl. Sci. Technol., 2010, vol. 47, no. 3, p. 314.

    Article  Google Scholar 

  15. Xiong, J., Koshizuka, S., and Sakai, M., Investigation of droplet impingement onto wet walls based on simulation using particle method, J. Nucl. Sci. Technol., 2011, vol. 48, no. 1, p. 145.

    Article  Google Scholar 

  16. Shi, H.H., Field, J.E., and Pickles, C.S.J., High speed liquid impact onto wetted solid surfaces, J. Fluids Eng., 1994, vol. 116, p. 345.

    Article  Google Scholar 

  17. Sasaki, H., Ochiai, N., and Iga, Y., Numerical analysis of damping effect of liquid film on material in high speed liquid droplet impingement, Int. J. Fluid Mach. Syst., 2016, vol. 9, no. 1, p. 57.

    Article  Google Scholar 

  18. Voinov, O.V. and Voinov, V.V., About the scheme of the collapse of a cavitation bubble near the wall and the formation of a cumulative stream, Dokl. Akad. Nauk SSSR, 1976, vol. 227, no. 1, p. 63.

    Google Scholar 

  19. Yabe, T., Xiao, F., and Utsumi, T., The constrained interpolation profile method for multiphase analysis, J. Comput. Phys., 2001, vol. 169, no. 2, p. 556.

    Article  MathSciNet  MATH  Google Scholar 

  20. Takizawa, K., Yabe, T., Tsugawa, Y., Tezduyar, T.E., and Mizoe, H., Computation of free-surface flows and fluid-object interactions with the CIP method based on adaptive meshless soroban grids, Comput. Mech., 2007, vol. 40, p. 167.

    Article  MATH  Google Scholar 

  21. Aganin, A.A. and Guseva, T.S., Numerical simulation of a jet impact on a wall, Math. Models Comput. Simul., 2017, vol. 9, no. 5, pp. 623–635.

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks Professor A.A. Aganin for fruitful discussions.

Funding

This work was supported by the Russian Science Foundation, project no. 17-11-01135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Guseva.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guseva, T.S. Influence of a Thin Liquid Layer on the Impact of a Jet upon a Wall. J. Mach. Manuf. Reliab. 48, 314–319 (2019). https://doi.org/10.3103/S1052618819040083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618819040083

Keywords:

Navigation