Skip to main content
Log in

Role of Platinum Loading on the Characteristics at the PEM Fuel Cell Cathode

  • DEVICES AND PRODUCTS BASED ON NANOMATERIALS AND NANOTECHNOLOGIES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Catalytic layers of low temperature fuel cell with various nanoscale platinum loading (40% Pt/C catalyst) catalyst loading have been designed by different methods. Membrane electrode assemblies with these electrodes were studied in hydrogen-air PEMFC. It was shown that the use of platinum loading 0.2 mg/cm2 leads to the highest utilization. Analytical modeling of cathode catalytic layer of PEMFC was carried out and the role of its main properties in current-voltage characteristics was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. Koohi-Fayegh and M. A. Rosen, J. Energy Storage 27, 101047 (2020). https://doi.org/10.1016/j.est.2019.101047

    Article  Google Scholar 

  2. Y. Liang, C.-Z. Zhao, H. Yuan, et al., InfoMat 1, 6 (2019). https://doi.org/10.1002/inf2.12000

    Article  CAS  Google Scholar 

  3. R. Hemmati and H. Saboori, Renewable Sustainable Energy Rev. 65, 11 (2016). https://doi.org/10.1016/j.rser.2016.06.029

    Article  CAS  Google Scholar 

  4. N. Khan, S. Dilshad, R. Khalid, et al., Energy Storage 1, e49 (2019). https://doi.org/10.1002/est2.49

    Article  Google Scholar 

  5. M. Sufyan, N. A. Rahim, M. M. Aman, et al., Renewable Sustainable Energy 11, 014105 (2019). https://doi.org/10.1063/1.5063866

    Article  CAS  Google Scholar 

  6. S. R. Sinsel, R. L. Riemke, and V. H. Hoffmann, Renewable Energy 145, 2271 (2020). https://doi.org/10.1016/j.renene.2019.06.147

    Article  Google Scholar 

  7. IEA CO2 Emissions from Fuel Combustion Database Documentation 2019, International Energy Agency, France. http://wds.iea.org/wds/pdf/WorldCo2_Documentation.pdf.

  8. Y. Wang, D. F. Ruiz Diaz, K. S. Chen, et al., Mater. Today 32, 178 (2020). https://doi.org/10.1016/j.mattod.2019.06.005

    Article  CAS  Google Scholar 

  9. L. Xing, W. Shi, H. Su, et al., Energy 177, 445 (2019). https://doi.org/10.1016/j.energy.2019.04.084

    Article  CAS  Google Scholar 

  10. R. Stolten, R. C. Samsun, and N. Garland, Fuel Cells: Data, Facts and Figures (Wiley-VCH, Weinheim, 2016). https://doi.org/10.1002/9783527693924

  11. Y. Wang, D. Y. C. Leung, J. Xuan, and H. Wang, Renewable Sustainable Energy Rev. 65, 961 (2016). https://doi.org/10.1016/j.rser.2016.07.046

    Article  CAS  Google Scholar 

  12. Y. A. Dobrovolsky, P. Jannasch, B. Lafitte, N. M. Belomoina, A. L. Rusanov, and D. Yu. Likhachev, Russ. J. Electrochem. 43, 489 (2007). https://doi.org/10.1134/S1023193507050011

    Article  CAS  Google Scholar 

  13. J. Wang, H. Wang, and Y. Fan, Engineering 4, 352 (2018). https://doi.org/10.1016/j.eng.2018.05.007

    Article  CAS  Google Scholar 

  14. I. E. L. Stephens, J. Rossmeisl, and I. Chorkendorff, Science (Washington, DC, U. S.) 354, 1378 (2016). https://doi.org/10.1126/science.aal3303

    Article  CAS  Google Scholar 

  15. K. Ehelebe, D. Seeberger, M. T. Y. Paul, et al., J. Electrochem. Soc. 166, F1259 (2019). https://doi.org/10.1149/2.0911915jes

    Article  CAS  Google Scholar 

  16. I. A. Stenina, E. Y. Safronova, A. V. Levchenko, et al., Therm. Eng. 63, 385 (2016). https://doi.org/10.1134/S0040601516060070

    Article  CAS  Google Scholar 

  17. M. Darab, A. O. Barnett, G. Lindbergh, et al., Electrochim. Acta 232, 505 (2017). https://doi.org/10.1016/j.electacta.2017.02.101

    Article  CAS  Google Scholar 

  18. S. Sui, X. Wang, X. Zhou, et al., J. Mater. Chem. A 5, 1808 (2017). https://doi.org/10.1039/C6TA08580F

    Article  CAS  Google Scholar 

  19. H. A. Gasteiger, J. E. Panels, and S. G. Yan, J. Power Sources 157, 162 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.013

    Article  CAS  Google Scholar 

  20. E. V. Gerasimova, E. Y. Safronova, A. A. Volodin, et al., Catal. Today 193, 81 (2012). https://doi.org/10.1016/j.cattod.2012.06.018

    Article  CAS  Google Scholar 

  21. O. Gröger, H. A. Gasteiger, and J. P. Suchsland, J. Electrochem. Soc. 162, A2605 (2015). https://doi.org/10.1149/2.0211514jes

    Article  CAS  Google Scholar 

  22. T. Ioroi, Z. Siroma, S. Yamazaki, and K. Yasuda, Adv. Energy Mater. 9, 1801284 (2018). https://doi.org/10.1002/aenm.201801284

    Article  CAS  Google Scholar 

  23. Y. Shao, J. P. Dodelet, G. Wu, and P. Zelenay, Adv. Mater. 31, 1 (2019). https://doi.org/10.1002/adma.201807615

    Article  CAS  Google Scholar 

  24. J. Huang, Z. Li, and J. Zhang, Front. Energy 11, 334 (2017). https://doi.org/10.1007/s11708-017-0490-6

    Article  Google Scholar 

  25. M. V. Dmitrieva, E. V. Gerasimova, A. A. Terent’ev, Yu. A. Dobrovol’skii, and E. V. Zolotukhina, Russ. J. Electrochem. 55, 889 (2019). https://doi.org/10.1134/S1023193519090064

    Article  CAS  Google Scholar 

  26. S. A. Kirakosyan, A. A. Alekseenko, V. E. Guterman, I. N. Novomlinskii, V. S. Men’shchikov, E. V. Gerasimova, and A. Yu. Nikulin, Russ. J. Electrochem. 55, 1258 (2019). https://doi.org/10.1134/S1023193519120085

    Article  CAS  Google Scholar 

  27. V. I. Pavlov, E. V. Gerasimova, E. V. Zolotukhina, G. M. Don, Yu. A. Dobrovolsky, and A. B. Yaroslavtsev, Nanotechnol. Russ. 11, 743 (2016). https://doi.org/10.1134/S199507801606015X

    Article  CAS  Google Scholar 

  28. V. A. Bogdanovskaya, O. K. Krasil’nikova, A. V. Kuzov, M. V. Radina, M. R. Tarasevich, V. B. Avakov, A. V. Kapustin, and I. K. Landgraf, Russ. J. Electrochem. 51, 602 (2015). https://doi.org/10.1134/S1023193515060038

    Article  CAS  Google Scholar 

  29. E. V. Gerasimova, N. G. Bukun, and Yu. A. Dobrovolsky, Russ. Chem. Bull. 60, 1045 (2011). https://doi.org/10.1007/s11172-011-0165-0

    Article  CAS  Google Scholar 

  30. K. Novikova, A. Kuriganova, I. Leontyev, et al., Electrocatalysis 9, 22 (2018). https://doi.org/10.1007/s12678-017-0416-4

    Article  CAS  Google Scholar 

  31. P.-C. Sui, X. Zhu, and N. Djilali, Electrochem. Energy Rev. 2, 428 (2019). https://doi.org/10.1007/s41918-019-00043-5

    Article  CAS  Google Scholar 

  32. D. M. Fadzillah, M. I. Rosli, M. Z. M. Talib, et al., Renewable Sustainable Energy Rev. 77, 1001 (2017). https://doi.org/10.1016/j.rser.2016.11.235

    Article  CAS  Google Scholar 

  33. L. Xing, X. Song, K. Scott, et al., Int. J. Hydrogen Energy 38, 14295 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.104

    Article  CAS  Google Scholar 

  34. H. Fathi, A. Raoof, S. H. Mansouri, et al., J. Electrochem. Soc. 164, F298 (2017). https://doi.org/10.1149/2.0871704jes

    Article  CAS  Google Scholar 

  35. H. Fathi, A. Raoof, Mansouri, et al., J. Power Sources 349, 57 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.012

    Article  CAS  Google Scholar 

  36. J. Zhang, PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications (Springer, London, 2008). https://doi.org/10.1007/978-1-84800-936-3

  37. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed. (Wiley, USA, 2007).

    Google Scholar 

  38. R. Masoodi, K. M. Pillai, N. Grahl, and H. Tan, J. Reinf. Plast. Compos. 31, 363 (2012). https://doi.org/10.1177/0731684412438629

    Article  CAS  Google Scholar 

  39. A. J. Bard, Standard Potentials in Aqueous Solution (Taylor and Francis, London, 2017).

    Book  Google Scholar 

  40. A. Kongkanand and M. F. Mathias, J. Phys. Chem. Lett. 7, 1127 (2016). https://doi.org/10.1021/acs.jpclett.6b00216

    Article  CAS  Google Scholar 

  41. J. P. Owejan, J. E. Owejan, and W. Gu, J. Electrochem. Soc. 160, F824 (2013). https://doi.org/10.1149/2.072308jes

    Article  CAS  Google Scholar 

  42. H. Oh, Y. Lee, G. Lee, et al., J. Power Sources 345, 67 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.087

    Article  CAS  Google Scholar 

  43. Freudenberg Gas Diffusion Layers Technical Data. https://www.fuelcellsetc.com/store/DS/freudenberg.pdf.

  44. DuPont™ Nafion® PFSA Membranes NR-211 and NR-212. https://www.fuelcellstore.com/spec-sheets/nafion-211-212-spec-sheet.pdf.

  45. S. Shi, A. Z. Weber, and A. Kusoglu, J. Membr. Sci. 516, 123 (2016). https://doi.org/10.1016/j.memsci.2016.06.004

    Article  CAS  Google Scholar 

  46. F. Barbir, PEM Fuel Cells: Theory and Practice (Academic, New York, 2012). https://doi.org/10.1016/B978-0-12-078142-3.X5000-9

  47. J. K. Norskov, T. Bligaard, A. Logadottir, et al., J. Electrochem. Soc. 152, J23 (2015). https://doi.org/10.1149/1.1856988

    Article  CAS  Google Scholar 

  48. L. Karpenko-Jereb, C. Sternig, C. Fink, and R. Tatschl, J. Hydrogen Energy 41, 13644 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.229

    Article  CAS  Google Scholar 

  49. A. Parthasarathy, J. Electrochem. Soc. 139, 2530 (1992). https://doi.org/10.1149/1.2221258

    Article  CAS  Google Scholar 

  50. E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems (Cambridge Univ. Press, Cambridge, 2009).

    Book  Google Scholar 

  51. W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC, Boca Raton, FL, 2014).

    Book  Google Scholar 

  52. A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications (Wiley, New York, 2001).

    Google Scholar 

  53. J. Zhao, S. Shahgaldi, I. Alaefour, et al., Appl. Energy 209, 203 (2018). https://doi.org/10.1016/j.apenergy.2017.10.087

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 17-79-30054). The study of the morphology of the samples was carried out using the equipment of the Analytical Center for Collective Use of the Institute of Problems of Chemical Physics, Russian Academy of Sciences, within the framework of the State Assignment (state registration no. AAAA-A19-119061890019-5).

The work of A.E. Antipov on computer simulation was supported by the Mendeleev University of Chemical Technology (project no. X2020-010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Gerasimova or A. E. Antipov.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derendyaev, M.A., Koryakin, D.V., Filalova, E.M. et al. Role of Platinum Loading on the Characteristics at the PEM Fuel Cell Cathode. Nanotechnol Russia 15, 797–806 (2020). https://doi.org/10.1134/S1995078020060087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020060087

Navigation