Skip to main content
Log in

Influence of Synthetic and Native Hydroxyapatite Nanoparticles on the Properties of Mesenchymal Stromal Cells of Bone Marrow

  • NANOBIOMEDICINE AND NANOPHARMACEUTICALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The synthesis of new forms of hydroxyapatite (HA) and the study of their interaction with living cells are a promising area of modern nanotechnology in chemistry and cell biology. A comparative analysis of the interaction between HA nanoparticles of various origin with living cells is carried out. Scanning electron microscopy revealed that native HA (NHA) particles isolated from native bone tissue are several times larger than that of synthetic HA (SHA) synthesized by a sedimentation method. The pore size and specific surface area of SHA is more than three times larger than similar NHA parameters. The presence of SHA in the culture medium, together with mesenchymal stromal cells, reduces their adhesion, flattening, and proliferation, in contrast to the presence of NHA particles, which have virtually no negative effect on the growth and reproduction of living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. H. Zhou and J. Lee, Acta Biomater. 7, 2769 (2011). https://doi.org/10.1016/j.actbio.2011.03.019

    Article  CAS  Google Scholar 

  2. L. Chen, J. M. Mccrate, J. C.-M. Lee, and H. Li, Nanotechnology 22, 105708 (2011). https://doi.org/10.1088/0957-4484/22/10/105708

    Article  CAS  Google Scholar 

  3. A. Matsumine, K. Kusuzaki, T. Matsubara, et al., J. Surg. Oncol. 93, 212 (2006). https://doi.org/10.1002/jso.20355

    Article  CAS  Google Scholar 

  4. S. V. Dorozhkin and M. Epple, Angew. Chem. Int. Ed. Eng. 41, 3130 (2002). https://doi.org/10.1002/1521-3773(20020902)

    Article  CAS  Google Scholar 

  5. L. John, M. Janeta, and S. Szafert, Mater. Sci. Eng. C 78, 901 (2017). https://doi.org/10.1016/j.msec.2017.04.133

    Article  CAS  Google Scholar 

  6. P. A. Brunton, R. P. Davies, J. L. Burke, et al., Br. Dent. J. 215, E6 (2013). >https://doi.org/10.1038/sj

    Article  CAS  Google Scholar 

  7. M. Okada and T. Furuzono, Sci. Technol. Adv. Mater. 13, 064103 (2012). https://doi.org/10.1088/1468-6996/13/6/064103

    Article  CAS  Google Scholar 

  8. X.-Y. Zhao, Y.-J. Zhu, F. Chen, et al., Cryst. Eng. Commun. 15, 7926 (2013). https://doi.org/10.1039/C3CE41255E

    Article  CAS  Google Scholar 

  9. M. Kolodziejczyk, D. Smolen, T. Chudoba, et al., Tissue Eng. Regener. Med. 8, 235 (2014).

    Google Scholar 

  10. M. Bilton, S. J. Milne, and A. P. Brown, J. Inorg. Non-Met. Mater. 2, 1 (2012). https://doi.org/10.4236/ojinm.2012.21001

    Article  CAS  Google Scholar 

  11. S. S. A. Abidi and Q. J. Murtaza, Mater. Sci. Technol. 30, 307 (2014). https://doi.org/10.1016/j.jmst.2013.10.011

    Article  CAS  Google Scholar 

  12. D. Smolen, T. Chudoba, I. Malka, et al., Int. J. Nanomed. 8, 653 (2013). https://doi.org/10.2147/ijn.s39299

    Article  Google Scholar 

  13. A. K. Nayak, Int. J. Chem. Technol. Res. 2, 903 (2010).

    Google Scholar 

  14. M. Šupová, J. Nanosci. Nanotechnol. 14, 1 (2014). https://doi.org/10.1166/jnn.2014.8895

    Article  CAS  Google Scholar 

  15. X. Zhao, S. Ng, B. C. Heng, et al., J. Arch. Toxicol. 87, 1037 (2013). https://doi.org/10.1007/s00204-012-0827-1

    Article  CAS  Google Scholar 

  16. M. R. Wiesner, G. V. Lowry, P. Alvarez, et al., Environ. Sci. Technol. 40, 4336 (2006). https://doi.org/10.1021/es062726m

    Article  CAS  Google Scholar 

  17. A. D. Maynard, R. J. Aitken, T. Butz, et al., Nature (London, U.K.) 444, 267 (2006). https://doi.org/10.1038/444267

    Article  CAS  Google Scholar 

  18. M. Motskin, D. M. Wright, K. Muller, et al., Biomaterials 30, 3307 (2009). https://doi.org/10.1016/j.biomaterials.2009.02.044

    Article  CAS  Google Scholar 

  19. L. Chen, J. M. Mccrate, J. C.-M. Lee, and H. Li, Nanotechnology 22, 105708 (2011). https://doi.org/10.1088/0957-4484/22/10/105708

    Article  CAS  Google Scholar 

  20. Yu. A. Nashchekina, A. S. Chabina, O. M. Osmolovskaya, et al., Tsitologiya, No. 10, 813 (2018).

    Article  Google Scholar 

  21. J. Idaszek, E. Kijeńska, M. Łojkowski, and W. Swieszkowski, Appl. Surf. Sci. 388, 762 (2016). https://doi.org/10.1016/j.apsusc.2016.03.038

    Article  CAS  Google Scholar 

  22. E. Kijeńska, S. Zhang, M. P. Prabhakaran, et al., Int. J. Polym. Mater. Polym. Biomater. 65, 807 (2016). https://doi.org/10.1080/00914037.2016.1163561

    Article  CAS  Google Scholar 

  23. I. P. Dobrovol’skaya, N. S. Tsarev, O. M. Osmolovskaya, I. A. Kasatkin, E. M. Ivan’kova, E. N. Popova, G. A. Pankova, and V. E. Yudin, Russ. J. Appl. Chem. 91, 368 (2018).

    Article  Google Scholar 

  24. T. J. Webster, C. Ergun, R. H. Doremus, et al., Biomaterials 22, 1327 (2001). https://doi.org/10.1016/s0142-9612(00)00285-4

    Article  CAS  Google Scholar 

  25. L. L. Hench and J. M. Polak, Science (Washington, DC, U. S.) 295, 1014 (2002). https://doi.org/10.1126/science.1067404

    Article  CAS  Google Scholar 

  26. Y. Cai, Y. Liu, W. Yan, et al., J. Mater. Chem. 17, 3780 (2007).

    Article  CAS  Google Scholar 

  27. S. J. Kalita, A. Bhardwaj, and H. A. Bhatt, Mater. Sci. Eng. C 27, 441 (2007).

    Article  CAS  Google Scholar 

  28. N. Tran and T. J. Webster, Acta Biomater. 7, 1298 (2011). https://doi.org/10.1016/j.actbio.2010.10.004

    Article  CAS  Google Scholar 

  29. M. S. Laranjeira, M. H. Fernandes, and F. J. Monteiro, J. Biomed. Mater. Res. A 95, 891 (2010). https://doi.org/10.1002/jbm.a.32916

    Article  CAS  Google Scholar 

  30. L. Chen, J. M. Mccrate, J. C. M. Lee, and H. Li, Nanotechnology 22, 105708 (2011). https://doi.org/10.1088/0957-4484/22/10/105708

    Article  CAS  Google Scholar 

Download references

Funding

The study was financed by the Russian Science Foundation (project no. 19-73-30003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Nashchekina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nashchekina, Y.A., Dobrovol’skaya, I.P., Ivan’kova, E.M. et al. Influence of Synthetic and Native Hydroxyapatite Nanoparticles on the Properties of Mesenchymal Stromal Cells of Bone Marrow. Nanotechnol Russia 15, 500–506 (2020). https://doi.org/10.1134/S1995078020040114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020040114

Navigation