Skip to main content
Log in

Selenium-Substituted Hydroxyapatite Nanoparticles and their in Vitro Interaction on Human Bone Marrow- and Umbilical Cord-Derived Mesenchymal Stem Cells

  • High-Performance Ceramics
  • Published:
Interceram - International Ceramic Review

Abstract

Hydroxyapatite (HA) is biocompatible with high binding activity to DNA and protein. Selenium (Se) plays a specific role in human health. Incorporation of selenium into biocompatible hydroxyapatite (HA) may endow the material with novel characteristics. in this work, a series of nano-hydroxyapatite [SeHA] powders with 1 to 5 mass-% substituted selenium were synthesised by an aqueous precipitation method using sodium selenite. The precipitates were dried at 60°C and their dried ground powders were characterised by XRD, FTIR end TEM. Substitution of Se ions took place in the crystal lattice of HA. The presence of Na ions in the hydroxyapatite was detected by XRF in all samples with selenium substituted in the lattice. No change was detected in the morphology of the rod-shaped particles, but a reduction in their size was observed as the selenium content increased. The cytotoxicity of the powders on human bone marrow mesynchymal stem cells (BM-MSCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs) was evaluated in vitro. The amount of 0.59 mM Se, corresponding to 2 mass-% substitution in the HA lsttice, did not show cytotoxicity and stimulated proliferation of UC-MSCs in contrast to pure HA powders which inhibited growth of cells. Toxicity started to appear in samples when substitution exceeded 2 mass-%. The highest concentration (5 mass-%) was severely cytotoxic. The results suggest that selenium substitution might be an attractive cell delivery modification of hydroxyapatite nanoparticles for future use in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mostafa, A.A., Rezk, K., Dahy, T., El-Basyouni, G.: Characterization and in-vitro assessment of nano-hydroxyapatite prepared by polymeric route. Proc. 2nd Inter. Conf. and Exh. on Multifunctional Nanocomposites and Nanomaterials. Sharm El Sheikh, Egypt, January 11–13 (2008) 1–10

  2. Rezk, K., Mostafa, A.A.: Preparation and bioactivity evaluation of hydroxyapatite titania/chitosan-gelatin polymeric biocomposites. Mater. Sci. and Eng. C28 (2008) 220–225

    Google Scholar 

  3. Yingchao Han, Shipu Li, Xianying Cao et al.: Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo. Scientific reports 4 (2014) Article number 7134

  4. Adams, B., Mostafa, A.A., Schwartz, Z., Boyan, B.D.: Osteoblast response to nanocrystalline calcium hydroxyapatite depends on carbonate content. J. Biomed. Mater. Res. Part A 102 (2014) [9] 3237–3242

    Article  CAS  Google Scholar 

  5. Mostafa, A.A., Ibrahim, D.M., Korowash, S.I., Fahim, F., Oudadesse, H.: Nanohybrid-composite scaffolds from substituted apatite/gelatin. Key Engi. Mater. 587 (2014) 233–238

    Article  CAS  Google Scholar 

  6. Mostafa, A.A., Oudadesse, H., Mohamed, M.B. et al.: Convenient approach of nanohydroxyapatite polymeric matrix composites. Chem. Eng. J. 153 (2009) 187–192

    Article  CAS  Google Scholar 

  7. Smith, D.K.: Calcium phosphate apatites in nature. In: Hydroxyapatite and related Materials. Edited by: Brown, P.W., Constantz, B., CRC Press, Boca Raton, USA (1994) 29–45

    Google Scholar 

  8. Carlisle, E.M.: Silicon: A possible factor in bone calcification. Science 167 (1969) 279–280

    Article  Google Scholar 

  9. Ruys, A.J.: Silicon-doped hydroxyapatite. J. Aust. Ceram. Soc. 29 (1993) 71–80

    CAS  Google Scholar 

  10. Ghadimi, E., Eimar, H., Marelli, B., Nazhat, S.N., Asgharian, M., Vali, H., Tamimi, F.: Trace elements can influence the physical properties of tooth enamel. SpringerPlus 2 (2013) 499

    Article  CAS  Google Scholar 

  11. Marie, P.J.: Strontium ranelate: New insights into its dual mode of action. Bone 40 (2007) S5–S8

    Article  CAS  Google Scholar 

  12. Bowen, H.J.M.: Trace elements in biochemistry, Academic Press, San Diego (1996)

    Google Scholar 

  13. Monteil-Rivera, F., Fedoroff M., Jeanjean J., Minel L., Barthes G., Dumonceau J.: Sorption of selenite (SeO3 2−) on hydroxyapatite: An exchange process, J. Colloid Interface Sci. 221 (2000) 291–300

    Article  CAS  Google Scholar 

  14. Steinbrenner, H., Speckmann, B., Klotz, L.O.: Selenoproteins: Antioxidant selenoenzymes and beyond. Arch. Biochem. Biophys. 595 (2016) 113–119

    Article  CAS  Google Scholar 

  15. Wrobel, J.K., Power, R., Toborek, M.: Biological activity of selenium: Revisited. IUBMB Life 68 (2016) [2] 97–105

    Article  CAS  Google Scholar 

  16. Czuczejko, J., Zachara, B.A., Staubach-Topczewska, E., Halota, W., Kedziora, J.: Selenium, glutathione and glutathione peroxidases in blood of patients with chronic liver diseases. Acta Biochim. Pol. 50 (2003) [4] 1147–1154

    CAS  Google Scholar 

  17. Ebert R. et al.: Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells 24 (2006) 1226–1235

    Article  CAS  Google Scholar 

  18. Burke, J., Hunter, M., Kolhe, R., Isales, C., Hamrick, M., Fulzele, S.: Therapeutic potential of mesenchymal stem cell based therapy for osteoarthritis. Clin. Transl. Med. 5 (2016) [1] 27

    Article  Google Scholar 

  19. Haldar, D., Henderson, N.C., Hirschfield, G., Newsome, P.N.: Mesenchymal stromal cells and liver fibrosis: A complicated relationship. FASEB J. 30 (2016) [12] 3905–3928

    Article  CAS  Google Scholar 

  20. Zeng, W. et al.: Antioxidant treatment enhances human mesenchymal stem cell anti-stress ability and therapeutic efficacy in an acute liver failure model. Sci. Rep. 5 (2015) 11100, doi: 10.1038/srep11100

    Article  CAS  Google Scholar 

  21. Bajek, A., Gurtowska, N., Olkowska, J., Kazmierski, L., Maj, M., Drewa, T.: Adipose-derived stem cells as a tool in cell-based therapies. Arch. Immunol. Ther. Exp. Warsz 64 (2016) [6] 443–454

    Article  CAS  Google Scholar 

  22. Mrozik, K., Gronthos, S., Shi, S., Bartold, P.M.: A method to isolate, purify, and characterize human periodontal ligament stem cells. Methods Mol. Biol. 1537 (2017) 413–427

    Article  CAS  Google Scholar 

  23. Mennan, C., Brown, S., McCarthy, H., Mavrogonatou, E., Kletsas, D., Garcia, J., Balain, B., Richardson, J., Roberts, S.: Mesenchymal stromal cells derived from whole human umbilical cord exhibit similar properties to those derived from Wharton’s jelly and bone marrow. FEBS Open Bio. 6 (2016) [11] 1054–1066

    Article  CAS  Google Scholar 

  24. Dabrowski, F.A., Burdzinska, A., Kulesza, A., Chlebus, M., Kaleta, B., Borysowski, J., Zolocinska, A., Paczek, L., Wielgos, M.: Mesenchymal stem cells from human amniotic membrane and umbilical cord can diminish immunological response in an in vitro allograft model. Gynecol Obstet Invest. 82 (2017) [3] 267–275

    Article  CAS  Google Scholar 

  25. Jarcho, M., Bolen, C.H., Thomas, M.B., Bobick, J., Kay, J.F., Doremus, R.H.: Synthesis and characterization in dense polycrystalline form. J. Mater. Sci. 11 (1976) 2027–2035

    Article  CAS  Google Scholar 

  26. Ibrahim, D.M., Mostafa, A.A., Korowash, S.I.: Chemical characterization of some substituted hydroxyapatites. Chem. Centr. J. 5 (2011) 74

    Article  CAS  Google Scholar 

  27. Bouyer, E., Gitzhofer, F., Boulos, I.: Morphological study of hydroxyapatite nanocrystal suspension. J. Mater. Sci. Mater. Med. 11 (2000) 523–531

    Article  CAS  Google Scholar 

  28. Lafon, J.P., Champion, E., Bernache-Assollant, D.: Processing of AB-type carbonated hydroxyapatite Ca10−x(PO4)6−x(CO3)x(OH)2−x−2y(CO3)y ceramics with controlled composition. J. Europ. Ceram. Soc. 28 (2008) [1] 139–147

    Article  CAS  Google Scholar 

  29. Suchanek, W.L., Shuk, P., Byrappa, K., Rimana, R.E., TenHuisen, K.S., Janas, V.F.: Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature. Biomaterials 23 (2002) [3] 699–710

    Article  CAS  Google Scholar 

  30. Tadic, D., Peters, F., Epple, M.: Continuous synthesis of amorphous carbonated apatites. Biomaterials 23 (2002) 2553–2559

    Article  CAS  Google Scholar 

  31. Kolmas, J., Oledzka, E., Sobczak, M., Nałęcz-Jawecki, G.: Nanocrystalline hydroxyapatite doped with selenium oxyanions: A new material for potential biomedical applications. Mater. Sci. and Eng. C39 (2014) 134–142

    Article  CAS  Google Scholar 

  32. Ross, S.D.: Inorganic Infrared and Raman Spectra. McGraw-Hill, London (1972), ISBN: 0070941793 9780070941793

    Google Scholar 

  33. Nakamoto, K.: Infrared and Raman spectra of inorganic and coordination compounds, 4th ed. John Wiley & Sons, New York (1986), ISBN 10: 0471010669 / ISBN 13: 978-0471010661

    Google Scholar 

  34. Su, C.H., Suarez, D.L.: Selenate and selenite sorption on iron oxides: An infrared and electrophoretic study. Soil Sci. Soc. Amer. J. 64 (2000) 101–111

    Article  CAS  Google Scholar 

  35. Remya, N.S., Syama, S., Gayathri, V., Varma, H.K., Mohanan, P.V.: An in vitro study on the interaction of hydroxyapatite nanoparticlesand bone marrow mesenchymal stem cells for assessing the toxicological behavior. Colloids and Surfaces B: Biointerfaces 117 (2014) 389–397

    Article  CAS  Google Scholar 

  36. Abdulah, R., Miyazaki, K., Nakazawa, M., Koyama, H.: Chemical forms of selenium for cancer prevention. J. Trace Elem. Med. Biol. 19 (2005) 141–150

    Article  CAS  Google Scholar 

  37. Yuan, Y., Liu, C., Qian, J., Wang, J., Zhang, Y.: Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials 31 (2010) 730–740

    Article  CAS  Google Scholar 

  38. Lu, F., Wu, S.H., Hung, Y., Mou, C.Y.: Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5 (2009) 1408–1413

    Article  CAS  Google Scholar 

  39. Zhao, X., Ng, S., Heng, B.C., Guo, J., Ma, L., Tan, T.T.Y., Ng, K.W., Loo, S.C.J.: Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch. Toxicol. 87 (2013) 1037–1052

    Article  CAS  Google Scholar 

  40. Ma, J., Wang, Y., Zhou, L., Zhang, S.: Preparation and characterization of selenite substituted hydroxyapatite. Mater. Sci. and Eng. C 33 (2013) 440–445

    Article  CAS  Google Scholar 

  41. Wang, Y., Ma, J., Zhou, L., Chen, J., Liu, Y., Qiu, Z., Zhang, S.: Dual functional selenium-substituted hydroxyapatite. Interface Focus 2 (2012) 378–386

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korowash, S.I., Burdzinska, A., Pędzisz, P. et al. Selenium-Substituted Hydroxyapatite Nanoparticles and their in Vitro Interaction on Human Bone Marrow- and Umbilical Cord-Derived Mesenchymal Stem Cells. Interceram. - Int. Ceram. Rev. 66, 244–252 (2017). https://doi.org/10.1007/BF03401219

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401219

Keywords

Navigation