Skip to main content
Log in

Structural and Chemical Transformations of Ruthenium, Cobalt, and Iron Clathrochelates Used as Electrocatalysts for a Hydrogen Evolution Reaction in a Water Electrolyzer

  • DEVICES AND PRODUCTS BASED ON NANOMATERIALS AND NANOTECHNOLOGIES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The structural evolution of three electrocatalytic systems for hydrogen evolution reaction using iron, cobalt, and ruthenium(II) clathrochelate complexes as catalysts in a water electrolyzer is studied by X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) spectroscopy. The complexes are shown to display essentially different robustness under water electrolysis conditions in pilot-scale hydrogen generators. The iron and cobalt(II) clathrochelates preserve their cage, macrobicyclic structure, and the encapsulated metal(II) ion is  reduced  to  metal(I) cation; whereas in the case of ruthenium(II) clathrochelate, the cage complex undergoes partial decomposition to form sulfur-containing products of decomposition of the encapsulating macrobicyclic hexasulfide ligand, which results in the accumulation of the ruthenium disulfide RuS2 in used clathrochelate-containing cathode material. Taking into account our experimental data on the chemical transformation of clathrochelate electrocatalysts under the conditions of 2Н+2 reaction, we discuss the possibilities for boosting the efficiency of electrocatalytic systems based on this class of coordination compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1 .
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. J. Esswein and D. G. Nocera, Chem. Rev. 107, 4022 (2007). https://doi.org/10.1021/cr050193e

    Article  CAS  Google Scholar 

  2. P. A. Jacques, V. Artero, J. Pecaut, and M. Fontecave, Proc. Natl. Acad. Sci. U. S. A. 106, 20627 (2009). https://doi.org/10.1073/pnas.0907775106

    Article  Google Scholar 

  3. B. D. Stubbert, J. C. Peters, and H. B. Gray, J. Am. Chem. Soc. 133, 18070 (2011). https://doi.org/10.1021/ja2078015

    Article  CAS  Google Scholar 

  4. F. Lakadamyali, M. Kato, N. M. Muresan, and E. Reisner, Angew. Chem. Int. Ed. 51, 9381 (2012). https://doi.org/10.1002/anie.201204180

    Article  CAS  Google Scholar 

  5. C. C. L. McCrory, C. Uyeda, and J. C. Peters, J. Am. Chem. Soc. 134, 3164 (2012). https://doi.org/10.1021/ja210661k

    Article  CAS  Google Scholar 

  6. X. Hu, B. S. Brunschwig, and J. C. Peters, J. Am. Chem. Soc. 129, 8988 (2007). https://doi.org/10.1021/ja067876b

    Article  CAS  Google Scholar 

  7. X. Hu, B. M. Cossairt, B. S. Brunschwig, et al., Chem. Commun., 4723 (2005). https://doi.org/10.1039/b509188h

  8. M. Razavet, V. Artero, and M. Fontecave, Inorg. Chem. 44, 4786 (2005). https://doi.org/10.1021/ic050167z

    Article  CAS  Google Scholar 

  9. B. Carole, V. Artero, and M. Fontecave, Inorg. Chem. 46, 1817 (2007). https://doi.org/10.1021/ic061625m

    Article  CAS  Google Scholar 

  10. J. P. Bigi, T. E. Hanna, W. H. Harman, et al., Chem. Commun. 46, 958 (2010). https://doi.org/10.1039/B915846D

    Article  CAS  Google Scholar 

  11. W. R. McNamara, Z. Han, C. J. Yin, et al., Proc. Natl. Acad. Sci. U. S. A. 109, 15594 (2012). https://doi.org/10.1073/pnas.1120757109

    Article  Google Scholar 

  12. C. F. Leung, Y. Z. Chen, H. Q. Yu, et al., Int. J. Hydrogen Energy 36, 11640 (2011). https://doi.org/10.1016/j.ijhydene.2011.06.062

    Article  CAS  Google Scholar 

  13. Y. Z. Voloshin, N. A. Kostromina, and R. Kraemer, Clathrochelates: Synthesis, Structure and Properties (Elsevier, Amsterdam, 2002).

    Google Scholar 

  14. Y. Z. Voloshin, I. G. Belaya, and R. Kraemer, Cage Metal Complexes: Clathrochelates Revisited (Springer, Heidelberg, 2017).

    Book  Google Scholar 

  15. E. Anxolabehere-Mallart, C. Costentin, M. Fournier, et al., J. Am. Chem. Soc. 134, 6104 (2012). https://doi.org/10.1021/ja301134e

    Article  CAS  Google Scholar 

  16. El S. Ghachtouli, M. Fournier, S. Cherdo, et al., J. Phys. Chem. C 117, 17073 (2013). https://doi.org/10.1021/jp405134a

    Article  CAS  Google Scholar 

  17. D. C. Lacy, G. M. Roberts, and J. C. Peters, J. Am. Chem. Soc. 137, 4860 (2015). https://doi.org/10.1021/jacs.5b01838

    Article  CAS  Google Scholar 

  18. Y. Z. Voloshin, V. V. Novikov, Y. V. Nelyubina, et al., Chem. Commun. 54, 3436 (2018). https://doi.org/10.1039/c7cc09611a

    Article  CAS  Google Scholar 

  19. Y. Z. Voloshin, O. A. Varzatskii, I. I. Vorontsov, and M. Yu. Antipin, Angew. Chem. Int. Ed. 44, 3400 (2005). https://doi.org/10.1002/anie.200463070

    Article  CAS  Google Scholar 

  20. Y. Z. Voloshin, V. M. Buznik, and A. G. Dedov, in Proceedings of the 2a 21st Mendeleev Congress on General and Applied Chemistry, St. Petersburg, 2019, p. 43.

  21. Y. Z. Voloshin, N. V. Chornenka, A. S. Belov, et al., J. Electrochem. Soc. 166, H598 (2019). https://doi.org/10.1149/2.0391913jes

    Article  CAS  Google Scholar 

  22. A. S. Pushkarev, M. A. Solovyev, S. A. Grigoriev, et al., Int. J. Hydrogen Energy 45, 26206 (2020). https://doi.org/10.1016/j.ijhydene.2020.02.098

  23. I. V. Pushkareva, A. S. Pushkarev, S. A. Grigoriev, et al., Russ. J. Appl. Chem. 89, 2109 (2016). https://doi.org/10.1134/S1070427216120260

    Article  CAS  Google Scholar 

  24. A. A. Kalinnikov, S. V. Ostrovskii, V. I. Porembskii, et al., Russ. J. Appl. Chem. 91, 927 (2018). https://doi.org/10.1134/S1070427218060071

    Article  CAS  Google Scholar 

  25. S. A. Grigoriev, A. S. Pushkarev, I. V. Pushkareva, et al., Int. J. Hydrogen Energy 42, 27845 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.048

    Article  CAS  Google Scholar 

  26. R. Valiollahi, M. Vagin, V. Gueskine, et al., Sustain. Energy Fuels 3, 3387 (2019). https://doi.org/10.1039/C9SE00687G

    Article  CAS  Google Scholar 

  27. A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zuba-vichus, Nucl. Instrum. Methods. Phys. Res., Sect. A 603, 95 (2009). https://doi.org/10.1016/j.nima.2008.12.167

    Article  CAS  Google Scholar 

  28. R. Senin, M. Borisov, E. Mukhamedzhanov, and M. Kovalchuk, Acta Crystallogr., A 73, C862 (2017).

    Article  Google Scholar 

  29. B. Ravel and M. Newville, J. Synchrotr. Rad. 12, 537 (2005). https://doi.org/10.1107/S0909049505012719

    Article  CAS  Google Scholar 

  30. M. Newville, J. Synchrotr. Rad. 8, 322 (2001). https://doi.org/10.1107/S0909049500016964

    Article  CAS  Google Scholar 

  31. Y. Z. Voloshin, O. A. Varzatskii, V. V. Novikov, et al., Eur. J. Inorg. Chem., 5401 (2010). https://doi.org/10.1002/ejic.201000444

  32. G. E. Zelinskii, A. A. Pavlov, A. S. Belov, et al., ACS Omega 2, 6852 (2017). https://doi.org/10.1021/acsomega.7b01088

    Article  CAS  Google Scholar 

  33. G. E. Zelinskii, S. V. Dudkin, A. S. Chuprin, et al., Inorg. Chim. Acta 463, 29 (2017). https://doi.org/10.1016/j.ica.2017.04.011

    Article  CAS  Google Scholar 

  34. A. S. Belov, Y. Z. Voloshin, A. A. Pavlov, et al., Inorg. Chem. 59, 5845 (2020). https://doi.org/10.1021/acs.inorgchem.9b03335

    Article  CAS  Google Scholar 

  35. G. E. Zelinskii, A. S. Belov, A. V. Vologzhanina, et al., Polyhedron 160, 108 (2019). https://doi.org/10.1016/j.poly.2018.12.031

    Article  CAS  Google Scholar 

  36. E. Bus, J. T. Miller, A. J. Kropf, et al., Phys. Chem. Chem. Phys. 8, 3248 (2006). https://doi.org/10.1039/b605248g

    Article  CAS  Google Scholar 

  37. P. Fornasini, F. Monti, and A. Sanson, J. Synchrotr. Rad. 8, 1214 (2001). https://doi.org/10.1107/S0909049501014923

    Article  CAS  Google Scholar 

  38. A. B. Edwards, D. J. Tildesley, and N. Binsted, Mol. Phys. 91, 357 (1997). https://doi.org/10.1080/002689797171643

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation within project no. 17-13-01468 (the syntheses of cage complexes); the Russian Foundation for Basic Research within grant no. 18-29-23007 (electrocatalysis experiments; Ya.Z. Voloshin), grant no. 19-58-26022 (investigations of membrane-electrode assemblies of water electrolyzer; S.A. Grigor’ev and A.S. Pushkarev); and with partial support from the Ministry of Education and Science, Russian Federation (project AAAA-A19-119020890025-3; quantitative analysis of XANES and EXAFS spectra by Ya.V. Zubavichus). Adsorption studies were carried out within a state assignment to the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the area of fundamental scientific research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya. V. Zubavichus or Ya. Z. Voloshin.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubavichus, Y.V., Grigor’ev, S.A., Pushkarev, A.S. et al. Structural and Chemical Transformations of Ruthenium, Cobalt, and Iron Clathrochelates Used as Electrocatalysts for a Hydrogen Evolution Reaction in a Water Electrolyzer. Nanotechnol Russia 15, 341–349 (2020). https://doi.org/10.1134/S1995078020030179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020030179

Navigation