Skip to main content
Log in

Russian Technologies and Nanostructural Materials in High Specific Power Systems Based on Hydrogen–Air Fuel Cells with an Open Cathode

  • DEVICES AND PRODUCTS BASED ON NANOMATERIALS AND NANOTECHNOLOGIES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The development of energy systems based on high specific power hydrogen–air fuel cells using domestic nanostructured materials and technologies is an urgent task. The technologies used for manufacturing proton-exchange membrane fuel cells (PEM FC) by the Russian company BMPower using Pt/C-electrocatalysts of the PM series produced by another Russian company, Prometheus R&D, are presented. It has been shown that, in terms of their functional characteristics, catalysts of the PM series are superior to imported analogues. The use of the PM40 catalyst, as well as other innovative solutions in the field of nanotechnology (nanostructured coatings of bipolar plates, formation of an ionomer on the catalytic layer) makes it possible to achieve a specific power of more than 1 kW/kg in the PEM FC power module with air cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. Electrocatalyst with a high loading of PM60 platinum requires the selection of an optimal composition of catalytic ink and a different Nafion/carbon carrier ratio than PM20–PM40 [18]. The electrochemical behavior of this catalyst has not been studied.

  2. Due to the low values of mass activity (Table 2), stress testing of the E-TEK 40 electrocatalyst was not performed.

REFERENCES

  1. Y. Wang, D. F. Ruiz Diaz, K. S. Chen, et al., Mater. Today 32, 178 (2020).

    Article  CAS  Google Scholar 

  2. O. Gonzalez-Espasandin, T. J. Leo, and E. Navarro, Sci. World J., 497642 (2014).

  3. R. W. Atkinson, M. W. Hazard, J. A. Rodgers, et al., J. Electrochem. Soc. 164, F46 (2017).

    Article  CAS  Google Scholar 

  4. A. Datta and W. Johnson, J. Propuls. Power 30, 490 (2014).

    Article  Google Scholar 

  5. Z. F. Pan, L. An, and C. Y. Wen, Appl. Energy 240, 473 (2019).

    Article  Google Scholar 

  6. S. A. Kirakosyan, A. A. Alekseenko, V. E. Guterman, V. A. Volochaev and N. Yu. Tabachkova, Nanotechnol. Russ. 11, 287 (2016).

    Article  Google Scholar 

  7. A. A. Alekseenko, V. E. Guterman, S. V. Belenov, et al., Int. J. Hydrogen Energy 43, 3676 (2018).

    Article  CAS  Google Scholar 

  8. K. Shinozaki, J. W. Zack, S. Pylypenko, et al., J. Electrochem. Soc. 162, F1384 (2015).

    Article  CAS  Google Scholar 

  9. D. Van der Vliet, D. S. Strmcnik, C. Wang, et al., J. Electroanal. Chem. 647, 29 (2010).

    Article  CAS  Google Scholar 

  10. W. J. Khudhayer, N. N. Kariuki, X. Wang, et al., J. Electrochem. Soc. 158, 1029 (2011).

    Article  Google Scholar 

  11. A. A. Alekseenko, E. A. Moguchikh, O. I. Safronenko, and V. E. Guterman, Int. J. Hydrogen Energy 43, 22885 (2018).

    Article  CAS  Google Scholar 

  12. Zh. Xua, H. Zhang, H. Zhong, et al., Appl. Catal. B 111–112, 264 (2012).

    Article  Google Scholar 

  13. O.-H. Kim, C.-Y. Ahn, S. Y. Kang, et al., Fuel Cells 19, 695 (2019).

    Article  CAS  Google Scholar 

  14. Z. Li, X. Deng, H. Zhou, et al., J. Solid State Electrochem. 24, 195 (2020).

    Article  CAS  Google Scholar 

  15. J. Perez, V. A. Paganin, and E. Antolini, J. Electroanal. Chem. 654, 108 (2011).

    Article  CAS  Google Scholar 

  16. F. Godínez-Salomón, E. Arce-Estrada, and M. Hallen-López, Int. J. Electrochem. Sci. 7, 2566 (2012).

    Google Scholar 

  17. Y. Lv, H. Liu, J. Li, et al., J. Electroanal. Chem. 873, 114444 (2020).

    Article  CAS  Google Scholar 

  18. S. Martens, L. Asen, G. Ercolano, et al., J. Power Sources 392, 274 (2018).

    Article  CAS  Google Scholar 

  19. A. Orfanidi, P. Madkikar, H. A. El-Sayed, et al., J. Electrochem. Soc. 164, F418 (2017).

    Article  CAS  Google Scholar 

  20. F. Barbir, PEM Fuel Cells: Theory and Practice (Elsevier, New York, 2005).

    Google Scholar 

  21. B. Millington, S. Du, and B. G. Pollet, J. Power Sources 196, 9013 (2011).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research University MPEI and the Southern Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Nefedkin.

Additional information

Translated by S. Avodkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nefedkin, S.I., Guterman, V.E., Alekseenko, A.A. et al. Russian Technologies and Nanostructural Materials in High Specific Power Systems Based on Hydrogen–Air Fuel Cells with an Open Cathode. Nanotechnol Russia 15, 370–378 (2020). https://doi.org/10.1134/S199507802003009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507802003009X

Navigation