Skip to main content
Log in

Study of Growth of Bare and Protein-Modified Gold Nanoparticles in the Presence of Hydroxylamine and Tetrachloroaurate

  • NANOBIOLOGY
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Gold nanoparticles (GNPs) and their conjugates are widely used as labels in bioanalytical methods. One of the main characteristics that determine their unique plasmon properties is their size. In this work, the growth of bare and protein-modified (with streptavidin) GNPs in the presence of hydrogen tetrachloroaurate and hydroxylamine was studied. Three initial preparations of GNPs with average diameters of 30.5 ± 7.7, 19.2 ± 1.6, and 4.4 ± 0.6 nm were obtained. An increase in size of GNPs at different initial particle sizes, reagent concentrations, presence/absence of protein coating was characterized using the methods of optical spectrophotometry, dynamic laser light scattering and transmission electron microscopy. The presence of sorbed proteins was shown to reduce the growth rate and affect the morphology of the forming nanoparticles. The conditions (1–10 mM hydroxylamine, 30 mM hydrogen tetrachloroaurate) that ensure the maximum increase in the size of GNPs (up to ≈70 nm) and their conjugates in homogeneous systems without the formation of unstable aggregates were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. L. Dykman and N. Khlebtsov, “Gold nanoparticles in biomedical applications: recent advances and perspectives,” Chem. Soc. Rev. 41, 2256–2282 (2012).

    Article  Google Scholar 

  2. J. Satija, N. Punjabi, D. Mishra, and S. Mukherji, “Plasmonic-ELISA: expanding horizons,” RSC Adv. 6, 85440–85456 (2016).

    Article  Google Scholar 

  3. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and B. N. Khlebtsov, “Gold nanostructures with plasmonic properties with biomedical research,” Ross. Nanotekhnol. 2 (3–4), 69–86 (2007).

    Google Scholar 

  4. S. Alex and A. Tiwari, “Functionalized gold nanoparticles: synthesis, properties, and applications—a review,” J. Nanosci. Nanotechnol. 15, 1869–1894 (2015).

    Article  Google Scholar 

  5. M. H. Jazayeri, H. Amani, A. A. Pourfatollah, H. Pazoki-Toroudi, and B. Sedighimoghaddam, “Various methods of gold nanoparticles (GNPs) conjugation to antibodies,” Sens. Bio-Sensing Res. 9, 17–22 (2016).

    Article  Google Scholar 

  6. W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, “Determination of size and concentration of gold nanoparticles from UV–Vis spectra,” Anal. Chem. 79, 4215–4221 (2007).

    Article  Google Scholar 

  7. H. de Puig, J. O. Tam, C.-W. Yen, L. Gehrke, and K. Hamad-Schifferli, “Extinction coefficient of gold nanostars,” J. Phys. Chem. 119, 17408–17415 (2015).

    Google Scholar 

  8. B. N. Khlebtsov, V. A. Khanadeev, E. V. Panfilova, T. E. Pylaev, O. A. Bibikova, S. A. Staroverov, V. A. Bogatyrev, L. A. Dykman, and N. G. Khlebtsov, “New types of nanomaterials: powders of gold nanospheres, nanorods, nanostars, and gold-silver nanocages,” Nanotechnol. Russ. 8, 209–219 (2013).

    Article  Google Scholar 

  9. X. Liu, M. Atwater, J. Wang, and Q. Huo, “Extinction coefficient of gold nanoparticles with different sizes and different capping ligands,” Colloids Surf., B 58, 3–7 (2007).

    Article  Google Scholar 

  10. J. Li, H. Duan, P. Xu, X. Huang, and Y. Xiong, “Effect of different-sized spherical gold nanoparticles grown layer by layer on the sensitivity of an immunochromatographic assay,” RSC Adv. 6, 26178–26185 (2016).

    Article  Google Scholar 

  11. G. A. Posthuma-Trumpie, J. Korf, and A. van Amerongen, “Lateral flow (immuno) assay: its strengths, weaknesses, opportunities, and threats. A literature survey,” Anal. Bioanal. Chem. 393, 569–582 (2009).

    Article  Google Scholar 

  12. Z. Zhang, H. Wang, Z. Chen, X. Wang, and J. Choo, “Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: strategies and applications,” Biosens. Bioelectron. 114, 52–65 (2018).

    Article  Google Scholar 

  13. M. Lan, Y. Guo, Y. Zhao, Y. Liu, W. Gui, and G. Zhu, “Multi-residue detection of pesticides using a sensitive immunochip assay based on nanogold enhancement,” Anal. Chim. Acta 938, 146–155 (2016).

    Article  Google Scholar 

  14. T. Bu, Q. Huang, L. Yan, L. Huang, M. Zhang, Q. Yang, B. Yang, J. Wang, and D. Zhang, “Ultra technically-simple and sensitive detection for salmonella enteritidis by immunochromatographic assay based on gold growth,” Food Control 84, 536–543 (2018).

    Article  Google Scholar 

  15. X. Liu, H. Xu, H. Xia, and D. Wang, “Rapid seeded growth of monodisperse, quasi-spherical, citrate-stabilized gold nanoparticles via H2O2 reduction,” Langmuir 28, 13720–13726 (2012).

    Article  Google Scholar 

  16. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seeding growth for size control of 5–40 nm diameter gold nanoparticles,” Langmuir 17, 6782–6786 (2001).

    Article  Google Scholar 

  17. E. A. Eremina, D. P. Kapusta, M. O. Volodina, A. V. Sidorov, A. V. Grigorieva, and E. A. Goodilin, “Investigation of kinetics of the process of formation of gold and silver nanoparticles and composites based on them,” Nanotechnol. Russ. 10, 713–726 (2015).

    Article  Google Scholar 

  18. K. R. Brown and M. J. Natan, “Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces,” Langmuir 14, 726–728 (1998).

    Article  Google Scholar 

  19. K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12, 306–313 (2000).

    Article  Google Scholar 

  20. Y. M. Yan, R. Tel-Vered, O. Yehezkeli, Z. Cheglakov, and I. Willner, “Biocatalytic growth of Au nanoparticles immobilized on glucose oxidase enhances the ferrocene-mediated bioelectrocatalytic oxidation of glucose,” Adv. Mater. 20, 2365–2370 (2008).

    Article  Google Scholar 

  21. Yu. S. Pestovskii, I. A. Budashov, and I. N. Kurochkin, “Investigation into the growth of gold nanoparticles immobilized on a mica surface due to tetrachloroauric acid reduction by hydrogen peroxide,” Nanotechnol. Russ. 6, 189–195 (2011).

    Article  Google Scholar 

  22. V. G. Panferov, I. V. Safenkova, A. V. Zherdev, and B. B. Dzantiev, “Post-assay growth of gold nanoparticles as a tool for highly sensitive lateral flow immunoassay. Application to the detection of potato virus X,” Microkhim. Acta 185, 506 (2018).

    Article  Google Scholar 

  23. K. R. Brown, L. A. Lyon, A. P. Fox, B. D. Reiss, and M. J. Natan, “Hydroxylamine seeding of colloidal Au nanoparticles. 3. Controlled formation of conductive Au films,” Chem. Mater. 12, 314–323 (2000).

    Article  Google Scholar 

  24. G. T. Hermanson, Bioconjugate Techniques (Academic, Waltham, 2013), pp. 465–506.

    Google Scholar 

  25. N. A. Byzova, I. V. Safenkova, S. N. Chirkov, A. V. Zherdev, A. N. Blintsov, B. B. Dzantiev, and I. G. Atabekov, “Development of immunochromatographic test systems for express detection of plant viruses,” Appl. Biochem. Microbiol. 45, 204–209 (2009).

    Article  Google Scholar 

  26. J. Piella, N. G. Bastus, and V. Puntes, “Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties,” Chem. Mater. 28, 1066–1075 (2016).

    Article  Google Scholar 

  27. N. A. Byzova, I. V. Safenkova, E. S. Slutskaya, A. V. Zherdev, and B. B. Dzantiev, “Less is more: a comparison of antibody—gold nanoparticle conjugates of different ratios,” Bioconjug. Chem. 28, 2737–2746 (2017).

    Article  Google Scholar 

  28. A. V. Zherdev and B. B. Dzantiev, “Ways to reach lower detection limits of lateral flow immunoassays,” in Rapid Tests: Advances in Design, Format, and Diagnostic Applications, Ed. by L. Anfossi (InTechOpen, London, 2018), pp. 9–43.

  29. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).

    Article  Google Scholar 

  30. A.-C. Neumann, X. Wang, R. Niessner, and D. Knopp, “Determination of microcystin-lR in surface water by a magnetic bead-based colorimetric immunoassay using antibody-conjugated gold nanoparticles,” Anal. Methods 8, 57–63 (2016).

    Article  Google Scholar 

  31. R. Hermann, P. Walther, and M. Muller, “Immunogold labeling in scanning electron microscopy,” Histochem. Cell Biol. 106, 31–39 (1996).

    Article  Google Scholar 

  32. N. G. Khlebtsov, “Determination of size and concentration of gold nanoparticles from extinction spectra,” Anal. Chem. 80, 6620–6625 (2008).

    Article  Google Scholar 

  33. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, and X. Yan, “Intrinsic peroxidase-like activity of ferromagnetic nanoparticles,” Nat. Nanotechnol. 2, 577–583 (2007).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was financially supported by the Russian Science Foundation (grant no. 16-16-04108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Dzantiev.

Additional information

Translated by the authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panferov, V.G., Samokhvalov, A.V., Safenkova, I.V. et al. Study of Growth of Bare and Protein-Modified Gold Nanoparticles in the Presence of Hydroxylamine and Tetrachloroaurate. Nanotechnol Russia 13, 614–622 (2018). https://doi.org/10.1134/S1995078018060095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078018060095

Navigation