Skip to main content
Log in

Effect of Electron-Acceptor Compounds on the Laser Burning of Photoluminescence of Hybrid Si/SiOx Silicon Nanoparticles

  • Nanophotonics
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The role of the environment on the dynamics of the photoburning processes of the red–infrared photoluminescence (PL) of hybrid silicon nanoparticles (npSi/SiOx) under the influence of continuous laser radiation (410 and 635 nm) in different media (in a helium or oxygen atmosphere at low pressures, in carbon tetrachloride solutions, in polymer matrices, and in vacuum) is studied. It is established that the presence of electron-acceptor molecules or compounds in the components of the medium increases the rate of luminescence photoburning (photosensitivity) of npSi/SiOx. The lowest photosensitivity is observed when the nanoparticles are in vacuum or in a helium atmosphere. It is shown that the photoburning rate depends on the wavelength of the exciting radiation. A mechanism of photosensitivity of npSi/SiOx is proposed which is based on recharging the centers involved in the photoluminescence process and located in the oxide shell or at the core–shell interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Brandt and V. Stutzman, “Spin-dependent effects in porous silicon,” Appl. Phys. Lett. 161, 2569–2571 (1992).

    Article  Google Scholar 

  2. P. K. Singh and S. T. Lakshmikumar, “Quenching and recovery of photoluminescence intensity of silicon nanoparticles embedded in optically transparent polymers,” Semicond. Sci. Technol. 17, 1123–1127 (2002).

    Article  Google Scholar 

  3. W. D. Kirkey, Y. Sahoo, X. Li, Y. He, M. T. Swihart, A. N. Cartwright, S. Bruckensteinc, and P. N. Prasad, “Quasi-reversible photoluminescence quenching of stable dispersions of silicon nanoparticles,” J. Mater. Chem. 15, 2028–2034 (2005).

    Article  Google Scholar 

  4. S. Godefroo, M. Hayne, M. Jivanesku, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Vantendelooa, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nat. Nanotechol. 3, 174–178 (2008).

    Article  Google Scholar 

  5. K. Mantey, M. K. Kwit, M. H. Hayfeeh, A. Kumar, L. D. Stephanson, and A. J. Nelson, “Measurement of the photostability of silicon nanoparticles under UVA and near infrared irradiation,” J. Appl. Phys. 107, 064316 (2010).

    Article  Google Scholar 

  6. V. N. Bagratashvili, S. G. Dorofeev, A. A. Ischenko, N. N. Kononov, V. Ya. Panchenko, A. O. Rybaltovskii, A. P. Sviridov, S. N. Senkov, S. I. Tsypina, V. I. Yusupov, S. A. Yuvchenko, and D. A. Zimnyakov, “Effects of laser-induced quenching and restoration of photoluminescence in hybrid Si/SiOx nanoparticles,” Laser Phys. Lett. 10, 095901 (2013).

    Article  Google Scholar 

  7. T. Dittrich, E. A. Konstantinova, and V. Yu. Timoshenko, “Influence of molecule adsorption on porous silicon photoluminescence,” Thin Solid Films 255, 238–240 (1995).

    Article  Google Scholar 

  8. M. Fujii, D. Kovalev, B. Goller, S. Minobe, S. Hayashi, and V. Yu. Timoshenko, “Time-resolved photoluminescence studies of the energy transfer from excitons confined in Si nanocrystals to oxygen molecules,” Phys. Rev. B 72, 165321 (2005).

    Article  Google Scholar 

  9. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delurue, “Electronic states and luminescence in porous silicon quntum dots: the role of oxygen,” Phys. Rev. Lett. 82, 197–200 (1999).

    Article  Google Scholar 

  10. A. O. Rybaltovskii, Yu. S. Zavorotnyi, A. P. Sviridov, E. D. Feklichev, A. A. Ishchenko, and V. N. Bagratashvili, “Broadband photoluminescence of hybrid Si/SiOx nanoparticles synthesized from silicon monoxide,” Nanotechnol. Russ. 10, 802–813 (2015). doi 10.1134/S1995078015050183

    Article  Google Scholar 

  11. S. G. Dorofeev, N. N. Kononov, G. V. Fetisov, A. A. Ishchenko, and D.-J. Liaw, “Nanocrystalline silicon synthesized from SiO,” Nanotekhnika 3 (23), 3–12 (2010).

    Google Scholar 

  12. S. G. Dorofeev, N. N. Kononov, and A. A. Ishchenko, “A new method for producing the fluorescent hydrophilic silicon-based nanoparticles,” Nanotekhnika 29 (1), 62–64 (2012).

    Google Scholar 

  13. A. O. Rybaltovskiy, A. A. Ischenko, Y. S. Zavorotny, A. V. Garshev, S. G. Dorofeev, N. N. Kononov, N. V. Minaev, S. A. Minaeva, A. P. Sviridov, P. S. Timashev, I. I. Khodos, V. I. Yusupov, M. A. Lazov, V. Ya. Panchenko, and V. N. Bagratashvili, “Synthesis of photoluminescent Si/SiOx core/shell nanoparticles by thermal disproportionation of SiO: structural and spectral characterization,” J. Mater. Sci. 50, 2247–2256 (2015).

    Article  Google Scholar 

  14. S. G. Dorofeev, A. A. Ischenko, N. N. Kononov, and G. V. Fetisov, “Effect of annealing temperature on the optical properties of nanosilicon produced from silicon monoxide,” Curr. Appl. Phys. 12, 718–725 (2012).

    Article  Google Scholar 

  15. L. A. Osminkina, K. P. Tamarov, A. P. Sviridov, R. A. Galkin, M. B. Gongalsky, V. V. Solovyev, A. A. Kudryavtseva, and V. Yu. Timoschenko, “Photoluminescent biocompatible silicon nanoparticles for cancer theranostic applications,” J. Biophoton. 5, 529–535 (2012).

    Article  Google Scholar 

  16. V. N. Bagratashvili, S. G. Dorofeev, A. A. Ishchenko, V. V. Koltashev, N. N. Kononov, A. A. Krutikova, A. O. Rybaltovskii, and G. V. Fetisov, “Immobilization of luminescent nanosilicon in a microfine polytetrafluoroethylene matrix by means of supercritical carbon dioxide,” Russ. J. Phys. Chem. B 4, 1164–170 (2010).

    Article  Google Scholar 

  17. P. Yu. Apel and S. N. Dmitriev, “Micro-and nanoporous materials produced using accelerated heavy ion beams,” Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 013002 (2011).

    Article  Google Scholar 

  18. A. O. Rybaltovskii, V. M. Buznik, Yu. S. Zavorotnyi, P. S. Timashev, S. N. Churbanov, and V. N. Bagratashvili, “Luminescent composites based on tetrafluoroethylene copolymer porous films produced by introduction of semiconductor nanoparticles in supercritical medium,” Sverkhkrit. Flyuidy: Teor. Prakt. 12 (3), 20–30 (2017).

    Google Scholar 

  19. A. K. Kikoin and I. K. Kikoin, General Course of Physics. Molecular Physics (Moscow, 1976) [in Russian].

    Google Scholar 

  20. D. Yu. Biryukov and A. F. Zatsepin, “Analytical temperature dependence of the photoluminescence of semiconductor quantum dots,” Phys. Solid State 56, 635 (2014).

    Article  Google Scholar 

  21. H. Rinnert, O. Jambois, and M. Vergnatt, “Photoluminescence properties of size-controlled silicon nanocrystals at low temperatures,” J. Appl. Phys. 106, 023501 (2009).

    Article  Google Scholar 

  22. O. B. Gusev, A. N. Poddubnyi, A. A. Prokof’ev, and I. N. Yassievich, “Light emission from silicon nanocrystals,” Semiconductors 47, 183 (2013).

    Article  Google Scholar 

  23. D. Kovalev, E. Gross, N. Kunzner, F. Koch, V. Yu. Timoshenko, and M. Fujii, “Resonant electronic energy transfer from excitons confined in silicon nanocrystals to oxygen molecules,” Phys. Rev. Lett. 89, 1374029 (2002).

    Article  Google Scholar 

  24. M. B. Gongalsky, E. A. Konstantinova, L. A. Osminkina, and V. Yu. Timoshenko, “Detection of singlet oxygen in photoexcited porous silicon nanocrystals by photoluminescence measurements,” Semiconductors 44, 89–92 (2010).

    Article  Google Scholar 

  25. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  26. M. Zacharias, D. Hiller, A. Hartel, and S. Gutch, “Defect engineering of Si nanocrystal interfaces,” Phys. Status Solidi A 209, 2449–2454 (2012).

    Article  Google Scholar 

  27. A. Gullis, L. T. Canham, and P. D. J. Calcott, “The structural and lluminescence properties of porous silica,” J. Appl. Phys. 82, 909–965 (1997).

    Article  Google Scholar 

  28. A. V. Gert and I. N. Yassievich, “Role of surface selftrapped excitons in the energy relaxation of photoexcited silicon nanocrystals,” Semiconductors 49, 492 (2015).

    Article  Google Scholar 

  29. C. Delerue, G. Allan, C. Reynaud, O. Guillois, G. Ledoux, and F. Huisken, “Multiexponential photoluminescence decay in indirect-gap semiconductor nanocrystals,” Phys. Rev. B 73, 235318 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Rybaltovskii.

Additional information

Original Russian Text © A.O. Rybaltovskii, Yu.S. Zavorotnyi, A.A. Ishchenko, A.E. Parshutkin, V.A. Radtsig, A.P. Sviridov, E.D. Feklichev, V.N. Bagratashvili, 2018, published in Rossiiskie Nanotekhnologii, 2018, Vol. 13, Nos. 3–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybaltovskii, A.O., Zavorotnyi, Y.S., Ishchenko, A.A. et al. Effect of Electron-Acceptor Compounds on the Laser Burning of Photoluminescence of Hybrid Si/SiOx Silicon Nanoparticles. Nanotechnol Russia 13, 141–151 (2018). https://doi.org/10.1134/S199507801802009X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507801802009X

Navigation