Skip to main content
Log in

The Effect of Temperature on the Photoluminescence of Hybrid Si/SiOx Nanoparticles

  • NANOPHOTONICS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Transformation of the photoluminescence (PL) spectra of hybrid Si/SiOx nanoparticles of the crystalline core–oxide shell type has been investigated in the temperature range of 10–320 K upon 325-nm laser excitation. Si/SiOx nanoparticles are synthesized from silicon monoxide and functionalized in dimethyl sulfoxide (DMSO) or octadecene (OD). The PL spectra of the nanoparticles are considered as superpositions of short-wavelength (400–550 nm) and long-wavelength (600–900 nm) bands, which have significantly different ratios of the total intensities of these components in Si/SiOx/OD and Si/SiOx/DMSO samples. For Si/SiOx/DMSO samples, the intensity of the short-wavelength band monotonically decreases with an increase in temperature from 10 K, whereas the intensity of the long-wavelength band first increases; however, then (at approximately 70 K) its slope begins to decrease and levels off. The specific features of the temperature dependence of the long-wavelength PL band intensity can be explained in this case by efficient energy transfer from defect oxygen-containing centers at the core boundary to exciton centers that arise under laser irradiation. In the case of Si/SiOx/OD particles, for which the short-wavelength band intensity is initially low, this effect is not observed. For these particles, the influence of 405-nm cw laser radiation on the kinetics of changes in the intensity of the long-wavelength PL band has been studied beginning with a temperature of 10 K. It has been found that the PL intensity increases at temperatures near 10 K with an increase in the exposure time, which is explained by additional heating of nanoparticles in a vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. G. Gullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” Appl. Phys. Rev. 82, 909 (1997).

    Article  Google Scholar 

  2. X. M. Wen, L. V. Dao, and P. Hannaford, “Temperature dependence of photoluminescence in silicon quantum dots,” J. Phys. D: Appl. Phys. 40, 3573 (2007).

    Article  CAS  Google Scholar 

  3. H. Rinnert, O. Jambois, and M. Vergnatt, “Photoluminescence properties of size-controlled silicon nanocrystals at low temperatures,” J. Appl. Phys. 106, 023501 (2009).

    Article  Google Scholar 

  4. A. Podhorodecki, G. Zatryb, J. Misiewicz, et al., “Temperature dependent emission quenching for silicon nanoclusters,” J. Nanosci. Nanotechnol. 10, 5648 (2010).

    Article  CAS  Google Scholar 

  5. M. Ray, N. R. Bandyopadhyay, U. Ghanta, et al., “Temperature dependent photoluminescence from porous silicon nanostructures, quantum confinement and oxide related translations,” J. Appl. Phys. 110, 094309 (2011).

    Article  Google Scholar 

  6. D. Yu. Biryukov and A. F. Zatsepin, “Analytical temperature dependence of the photoluminescence of semiconductor quantum dots,” Phys. Solid State 56, 635 (2014).

    Article  CAS  Google Scholar 

  7. S. Mitra, V. Švrček, M. Macias-Montero, et al., “Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals,” Sci. Rep. 6, 27727 (2016).

    Article  CAS  Google Scholar 

  8. O. B. Gusev, A. N. Poddubnyi, A. A. Prokof’ev, and I. N. Yassievich, “Light emission from silicon nanocrystals,” Semiconductors 47, 183 (2013).

    Article  CAS  Google Scholar 

  9. R. Mazzaro, F. Romano, and P. Ceroni, “Long-lived luminescence of silicon nanocrystals: from principles to applications,” Phys. Chem. Chem. Phys. 9, 26507 (2017).

    Article  Google Scholar 

  10. K. Dohnalova, A. N. Poddubny, A. A. Prokofiev, et al., “Surface brightens up Si quantum dots: direct bandgap-like size-tunable emission,” Light-Sci. Appl. 2, e47 (2013).

    Article  Google Scholar 

  11. A. Gupta and H. Wiggers, “Freestanding silicon quantum dots: origin of red and blue luminescence,” Nanotechnology 22, 055707 (2011).

    Article  Google Scholar 

  12. V. N. Bagratashvili, S. G. Dorofeev, A. A. Ischenko, et al., “Effects of laser-induced quenching and restoration of photoluminescence in hybrid Si/SiOx nanoparticles,” Laser Phys. Lett. 10, 095901 (2013).

    Article  Google Scholar 

  13. A. O. Rybaltovskiy, A. A. Ischenko, Y. S. Zavorotny, et al., “Synthesis of photoluminescent Si/SiOx core/shell nanoparticles by thermal disproportionation of SiO: structural and spectral characterization,” J. Mater. Sci. 50, 2247 (2015).

    Article  CAS  Google Scholar 

  14. A. O. Rybaltovskii, Yu. S. Zavorotnyi, A. P. Sviridov, E. D. Feklichev, A. A. Ishchenko, and V. N. Bagratashvili, “Broadband photoluminescence of hybrid Si/SiOx nanoparticles synthesized from silicon monoxide,” Nanotechnol. Russ. 10, 802 (2015).

    Article  CAS  Google Scholar 

  15. A. O. Rybaltovskii, Yu. S. Zavorotnyi, A. A. Ishchenko, A. E. Parshutkin, V. A. Radtsig, A. P. Sviridov, E. D. Feklichev, and V. N. Bagratashvili, “Effect of electron-acceptor compounds on the laser burning of photoluminescence of hybrid Si/SiOx silicon nanoparticles,” Nanotechnol. Russ. 13, 141 (2018).

    Article  CAS  Google Scholar 

  16. S. G. Dorofeev, V. N. Bagratashvili, V. P. Dyadchenko, et al., “Synthesis and characterization of red photoluminescent hydrophilic silicon—based nanoparticles,” Nanotekhnika 29 (1), 79 (2012).

    Google Scholar 

  17. S. G. Dorofeev, A. A. Ischenko, N. N. Kononov, and G. V. Fetisov, “Effect of annealing temperature on the optical properties of nanosilicon produced from silicon monoxide,” Curr. Appl. Phys. 12, 718 (2012).

    Article  Google Scholar 

  18. G. Ledoux, O. Guillois, D. Porterat, et al., “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62, 15942 (2000).

    Article  CAS  Google Scholar 

  19. G. Ledoux, J. Gong, F. Huisken, et al., “Photoluminescence of size-separated silicon nanocrystals: confirmation of quantum confinement,” Appl. Phys. Lett. 80, 4834 (2002).

    Article  CAS  Google Scholar 

  20. K. Tamarov, W. Xu, L. Osminkina, et al., “Temperature responsive porous silicon nanoparticles for cancer therapy-spatiotemporal triggering through infrared and radiofrequency electromagnetic heating,” J. Control. Release 241, 220 (2016).

    Article  CAS  Google Scholar 

  21. P. D. J. Calcott, K. J. Nash, L. T. Canham, et al., “Identification ofradiative transititons in highly porous silicon. Letter to the editor,” J. Phys.: Condens. Matter 5, L91 (1993).

    CAS  Google Scholar 

  22. V. Bagratashvili, E. Feklichev, A. Rybaltovskiy, et al., “Effects of electron tunneling in photophysics of quantum-sized luminescent nanosilicon,” J. Nanopart. Res. 20, 50 (2018).

    Article  Google Scholar 

  23. Y. Zhu, H. H. Wang, and P. P. Ong, “Evidence of photoluminescence related to subsurface Si–O–Si bonds in sputtered silicon nanoparticles,” Solid State Commun. 116, 427 (2000).

    Article  CAS  Google Scholar 

  24. L. Ondič, K. Kůsová, M. Ziegler, et al., “A complex study of the fast blue luminescence of oxidized silicon nanocrystals: the role of the core,” Nanoscale 6, 3837 (2014).

    Article  Google Scholar 

  25. G. L. Plautz, I. L. Graff, W. H. Schreiner, and A. G. Bezerra, “Evolution of size distribution, optical properties, and structure of Si nanoparticles obtained by laser-assisted fragmentation,” Appl. Phys. A 123, 359 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S.G. Dorofeev, employee of the Department of Chemistry, Moscow State University, for supplying nanosilicon sols.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 16-29-11741 ofi-m, and the Ministry of Science and Higher Education of the Russian Federation within government contract with the Federal Scientific Research Center Crystallography and Photonics (Russian Academy of Sciences) in the part concerning the measurements of low-temperature photoluminescence spectra of silicon nanoparticles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Sviridov.

Additional information

Dedicated to the memory of V.N. Bagratashvili

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybaltovskii, A.O., Zavorotnyi, Y.S., Lotin, A.A. et al. The Effect of Temperature on the Photoluminescence of Hybrid Si/SiOx Nanoparticles. Nanotechnol Russia 14, 82–89 (2019). https://doi.org/10.1134/S1995078019010099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019010099

Navigation