Skip to main content
Log in

STED nanolithography of three-dimensional plasmonic structures

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The application of the STED method (STimulated Emission Depletion) to silver photoreduction and metal and metalorganic nanostructure formation is demonstrated. We study the influence of various factors on the process of STED nanolithography. We investigate the morphology and structural parameters of the hybrid nanostructure arrays produced with the STED method. The influence of silver nanoparticles on the physical properties of photoinitiator molecules (DETC) manifests itself in a lifetime reduction of the excited state with 2.3 to 0.6 ns. A new method of additive nanotechnology is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Mater. 13, 139 (2014).

    Article  Google Scholar 

  2. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of threedimensional photonic metamaterials,” Nature Photon. 5, 523 (2011).

    Google Scholar 

  3. K. G. Stamplecoskie and J. C. Scaiano, “Silver as an example of the applications of photochemistry to the synthesis and uses of nanomaterials,” Photochem. Photobiol. 88, 762 (2012).

    Article  Google Scholar 

  4. D. C. Meisel, M. Wegener, and K. Busch, “Threedimensional photonic crystals by holographic lithography using the umbrella configuration: Symmetries and complete photonic band gaps,” Phys. Rev. B 70, 165104 (2004).

    Article  Google Scholar 

  5. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulatedemission-depletion fluorescence microscopy,” Opt. Lett. 19, 780 (1994).

    Article  Google Scholar 

  6. M. Yamanaka, N. I. Smith, and K. Fujita, “Introduction to super-resolution microscopy,” Microscopy 63, 177 (2014).

    Article  Google Scholar 

  7. D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schonle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-angstrom emitter localization,” Adv. Opt. Mater. 24 (44), 309 (2012).

    Google Scholar 

  8. P. V. Korolenko, Optics of Coherent Radiation (Mosk. Gos. Univ., Moscow, 1998), p. 155 [in Russian].

    Google Scholar 

  9. S. W. Hell, “Microscopy and its focal switch,” Nature Methods 6, 24 (2009).

    Article  Google Scholar 

  10. M. Leutenegger, C. Eggeling, and S. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18, 26417 (2010).

    Article  Google Scholar 

  11. D. A. Glubokov, V. V. Sychev, A. G. Vitukhnovskii, and I. V. Taidakov, “Method of manufacturing resistive masks for nanolithography,” RF Patent No. 2510632 (2012).

    Google Scholar 

  12. J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express 1, 614 (2011).

    Article  Google Scholar 

  13. R. Wallhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120nm resolution and 55 nm structure size in STED-litography,” Opt. Express 21, 10831 (2013).

    Article  Google Scholar 

  14. Y. Cao, Z. Gan, B. Jia, R. A. Evans, and M. Gu, “High-photosensitive resin for super-resolution directlaser-writing based on photoinhibited polymerization,” Opt. Express 19, 19486 (2011).

    Article  Google Scholar 

  15. T. Klar, R. Wollhoffen, and J. Jacak, “Sub-Abbe resolution: from STED microscopy to STED lithography,” Phys. Scripta T 162, 014049 (2014).

    Article  Google Scholar 

  16. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  17. T. J. A. Wolf, J. Fischer, M. Wegener, and A. N. Unterreiner, “Pump-probe spectroscopy on photoinitiators for stimulated-emission-depletion optical lithography,” Opt. Lett. 36, 3188 (2011).

    Article  Google Scholar 

  18. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev. 7, 22 (2013).

    Article  Google Scholar 

  19. J. Enderlein, “Theoretical study of single molecule fluorescence in a metallic nanocavity,” Appl. Phys. Lett. 80, 315 (2002).

    Article  Google Scholar 

  20. J. Enderlein, “Spectral properties of a fluorescing molecule within a spherical metallic nanocavity,” Phys. Chem. 4, 2780 (2002).

    Google Scholar 

  21. Y. Sivan, Y. Sonnefraud, S. Kena-Cohen, J. Pendry, and S. Maier, “Nanoparticle assisted stimulated-emission-depletion nanoscopy,” ACS Nano 6, 5291 (2012).

    Article  Google Scholar 

  22. Y. Sivan, “Performance improvement in nanoparticleassisted stimulatedemission-depletion nanoscopy,” Appl. Phys. Lett. 101, 021111 (2012).

    Article  Google Scholar 

  23. Y. Sonnefraud, H. Sinclair, Y. Sivan, M. R. Foreman, C. W. Dunsby, M. A. A. Neil, P. M. French, and S. A. Maier, “Experimental proof of concept of nanoparticle-assisted STED,” Nano Lett. 14, 4449 (2014).

    Article  Google Scholar 

  24. D. A. Glubokov, V. V. Sychev, and A. G. Vitukhnovsky, and A. E. Korol’kov, “Photonic crystal fibre-based light source for STED lithography,” Quantum Electron. 43, 588 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Chubich.

Additional information

Original Russian Text © S.P. Eliseev, A.E. Korolkov, A.G. Vitukhnovsky, D.A. Chubich, V.V. Sychev, 2016, published in Rossiiskie Nanotekhnologii, 2016, Vol. 11, Nos. 3–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliseev, S.P., Korolkov, A.E., Vitukhnovsky, A.G. et al. STED nanolithography of three-dimensional plasmonic structures. Nanotechnol Russia 11, 200–207 (2016). https://doi.org/10.1134/S1995078016020038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078016020038

Keywords

Navigation