Skip to main content
Log in

Enhanced Multiphoton-Induced Luminescence in Silver Nanoparticles Fabricated with Nanosphere Lithography

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We study multiphoton-absorption-induced luminescence (MAIL) in triangular silver nanoprisms fabricated with nanosphere lithography. We observe strong MAIL when the exciting infrared fs laser pulses overlap the main surface plasmon resonance of the particles, with significantly less signal from off-resonance structures present on the same substrate. The MAIL signal partially bleaches during imaging, but at higher illumination intensities, certain particles undergo a sudden multiplefold increase in MAIL brightness, which we show is associated with the deformation or melting of the particles into spheroids. The brightening may be due to the reduction of surface silver oxide into strongly luminescent silver nanoclusters or to the formation or activation of emission centers on the particle surface triggered by the melting of the particle. Regardless of the exact nature of the emission, silver oxide plays an important role in the process, evidenced by a twofold or threefold increase in MAIL luminosity from the triangular particles when their surface oxide is chemically reduced during imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mooradian A (1969) Photoluminescence of metals. Phys Rev Lett 22(5):185–187. doi:10.1103/PhysRevLett.22.185

    Article  CAS  Google Scholar 

  2. Boyd GT, Yu ZH, Shen YR (1986) Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys Rev B 33(12):7923–7936. doi:10.1103/PhysRevB.33.7923

    Article  CAS  Google Scholar 

  3. Mohamed MB, Volkov V, Link S, El-Sayed MA (2000) The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 317(6):517–523. doi:10.1016/S0009-2614(99)01414-1

    Article  CAS  Google Scholar 

  4. Dulkeith E, Niedereichholz T, Klar TA, Feldmann J, von Plessen G, Gittins DI, Mayya KS, Caruso F (2004) Plasmon emission in photoexcited gold nanoparticles. Phys Rev B 70 (20):205424. doi:10.1103/Physrevb.70.205424

  5. Yorulmaz M, Khatua S, Zijlstra P, Gaiduk A, Orrit M (2012) Luminescence quantum yield of single gold nanorods. Nano Lett 12(8):4385–4391. doi:10.1021/Nl302196a

    Article  CAS  Google Scholar 

  6. Bouhelier A, Bachelot R, Lerondel G, Kostcheev S, Royer P, Wiederrecht GP (2005) Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys Rev Lett 95(26):267405. doi:10.1103/Physrevlett.95.267405

    Article  CAS  Google Scholar 

  7. Beversluis MR, Bouhelier A, Novotny L (2003) Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys Rev B 68(11):115433. doi:10.1103/Physrevb.68.115433

    Article  Google Scholar 

  8. Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, New York

    Book  Google Scholar 

  9. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9(3):193–204. doi:10.1038/nmat2630

    Article  CAS  Google Scholar 

  10. Hoogenboom JP, Sanchez-Mosteiro G, Colas des Francs G, Heinis D, Legay G, Dereux A, van Hulst NF (2009) The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity. Nano Lett 9(3):1189–1195. doi:10.1021/nl803865a

    Article  CAS  Google Scholar 

  11. Hu H, Duan H, Yang JKW, Shen ZX (2012) Plasmon-modulated photoluminescence of individual gold nanostructures. ACS Nano 6(11):10147–10155. doi:10.1021/nn3039066

    Article  CAS  Google Scholar 

  12. Tcherniak A, Dominguez-Medina S, Chang W-S, Swanglap P, Slaughter LS, Landes CF, Link S (2011) One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods. J Phys Chem C 115(32):15938–15949. doi:10.1021/jp206203s

    Article  CAS  Google Scholar 

  13. Guan Z, Gao N, Jiang X-F, Yuan P, Han F, Xu Q-H (2013) Huge enhancement in two-photon photoluminescence of au nanoparticle clusters revealed by single-particle spectroscopy. J Am Chem Soc 135(19):7272–7277. doi:10.1021/ja400364f

    Article  CAS  Google Scholar 

  14. Bloemendal D, Ghenuche P, Quidant R, Cormack IG, Loza-Alvarez P, Badenes G (2006) Local field spectroscopy of metal dimers by TPL microscopy. Plasmonics 1(1):41–44. doi:10.1007/s11468-006-9007-6

    Article  Google Scholar 

  15. Viarbitskaya S, Teulle A, Marty R, Sharma J, Girard C, Arbouet A, Dujardin E (2013) Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms. Nat Mater 12(5):426–432. doi:10.1038/Nmat3581

    Article  CAS  Google Scholar 

  16. Imura K, Okamoto H (2009) Properties of photoluminescence from single gold nanorods induced by near-field two-photon excitation†. J Phys Chem C 113(27):11756–11759. doi:10.1021/jp9018074

    Article  CAS  Google Scholar 

  17. Wang H, Huff TB, Zweifel DA, He W, Low PS, Wei A, Cheng J-X (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci U S A 102(44):15752–15756. doi:10.1073/pnas.0504892102

    Article  CAS  Google Scholar 

  18. Huff TB, Hansen MN, Tong L, Zhao Y, Wang HF, Zweifel DA, Cheng JX, Wei A (2007) Plasmon-resonant nanorods as multimodal agents for two-photon luminescent imaging and photothermal therapy. Colloidal Quantum Dots for Biomedical Applications II 6448:art. no. 64480D. doi:10.1117/12.717537

  19. Lissett B, Jiantang S, Kun F, Nastassja L, Vengadesan N, Joseph C, Rebekah D (2008) Enhanced multi-spectral imaging of live breast cancer cells using immunotargeted gold nanoshells and two-photon excitation microscopy. Nanotechnology 19(31):315102. doi:10.1088/0957-4484/19/31/315102

    Article  Google Scholar 

  20. Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7(4):941–945. doi:10.1021/nl062962v

    Article  CAS  Google Scholar 

  21. Huff TB, Tong L, Zhao Y, Hansen MN, Cheng J-X, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2(1):125–132. doi:10.2217/17435889.2.1.125

    Article  CAS  Google Scholar 

  22. Terentyuk GS, Maslyakova GN, Suleymanova LV, Khlebtsov NG, Khlebtsov BN, Akchurin GG, Maksimova IL, Tuchin VV (2009) Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy. J Biomed Opt 14(2):021016. doi:10.1117/1.3122371

  23. Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183. doi:10.1002/smll.201000134

    Article  CAS  Google Scholar 

  24. Yau SH, Varnavski O, Gilbertson JD, Chandler B, Ramakrishna G, Goodson T (2010) Ultrafast optical study of small gold monolayer protected clusters: a closer look at emission. J Phys Chem C 114(38):15979–15985. doi:10.1021/Jp101420g

    Article  CAS  Google Scholar 

  25. Wilcoxon JP, Martin JE, Parsapour F, Wiedenman B, Kelley DF (1998) Photoluminescence from nanosize gold clusters. J Chem Phys 108(21):9137–9143. doi:10.1063/1.476360

    Article  CAS  Google Scholar 

  26. Marchetti AP, Muenter AA, Baetzold RC, McCleary RT (1998) Formation and spectroscopic manifestation of silver clusters on silver bromide surfaces. J Phys Chem B 102(27):5287–5297. doi:10.1021/jp980729i

    Article  CAS  Google Scholar 

  27. Peyser LA, Vinson AE, Bartko AP, Dickson RM (2001) Photoactivated fluorescence from individual silver nanoclusters. Science 291(5501):103–106. doi:10.1126/science.291.5501.103

    Article  CAS  Google Scholar 

  28. Ganguly M, Pal A, Negishi Y, Pal T (2013) Synthesis of highly fluorescent silver clusters on gold(i) surface. Langmuir 29(6):2033–2043. doi:10.1021/la304835p

    Article  CAS  Google Scholar 

  29. Bertorelle F, Hamouda R, Rayane D, Broyer M, Antoine R, Dugourd P, Gell L, Kulesza A, Mitric R, Bonacic-Koutecky V (2013) Synthesis, characterization and optical properties of low nuclearity liganded silver clusters: Ag31(SG)19 and Ag15(SG)11. Nanoscale 5(12):5637–5643. doi:10.1039/c3nr00677h

    Article  CAS  Google Scholar 

  30. Schaeffer N, Tan B, Dickinson C, Rosseinsky MJ, Laromaine A, McComb DW, Stevens MM, Wang Y, Petit L, Barentin C, Spiller DG, Cooper AI, Levy R (2008) Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilized gold clusters in the 1.1-1.7 nm size range. Chem Commun (34):3986–3988. doi:10.1039/b809876j

  31. Zheng J, Petty JT, Dickson RM (2003) High quantum yield blue emission from water-soluble Au-8 nanodots. J Am Chem Soc 125(26):7780–7781. doi:10.1021/Ja035473v

    Article  CAS  Google Scholar 

  32. Varnavski O, Ramakrishna G, Kim J, Lee D, Goodson T (2010) Critical size for the observation of quantum confinement in optically excited gold clusters. J Am Chem Soc 132(1):16–17. doi:10.1021/Ja907984r

    Article  CAS  Google Scholar 

  33. Imura K, Nagahara T, Okamoto H (2005) Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. J Phys Chem B 109(27):13214–13220. doi:10.1021/jp051631o

    Article  CAS  Google Scholar 

  34. Smitha SL, Nissamudeen KM, Philip D, Gopchandran KG (2008) Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 71(1):186–190. doi:10.1016/j.saa.2007.12.002

    Article  CAS  Google Scholar 

  35. Ueno K, Juodkazis S, Mizeikis V, Sasaki K, Misawa H (2008) Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths. Adv Mater 20(1):26–30. doi:10.1002/adma.200602680

    Article  CAS  Google Scholar 

  36. Geddes CD, Parfenov A, Gryczynski I, Lakowicz JR (2003) Luminescent blinking from silver nanostructures. J Phys Chem B 107(37):9989–9993. doi:10.1021/jp030290g

    Article  CAS  Google Scholar 

  37. Borys NJ, Lupton JM (2011) Surface-enhanced light emission from single hot spots in tollens reaction silver nanoparticle films: linear versus nonlinear optical excitation. J Phys Chem C 115(28):13645–13659. doi:10.1021/jp203866g

    Article  CAS  Google Scholar 

  38. Biagioni P, Celebrano M, Savoini M, Grancini G, Brida D, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Duò L, Hecht B, Cerullo G, Finazzi M (2009) Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration. Phys Rev B 80(4):045411. doi:10.1103/PhysRevB.80.045411

    Article  Google Scholar 

  39. Jiang X-F, Pan Y, Jiang C, Zhao T, Yuan P, Venkatesan T, Xu Q-H (2013) Excitation nature of two-photon photoluminescence of gold nanorods and coupled gold nanoparticles studied by two-pulse emission modulation spectroscopy. J Phys Chem Lett 4(10):1634–1638. doi:10.1021/jz400582h

    Article  CAS  Google Scholar 

  40. Rethfeld B, Kaiser A, Vicanek M, Simon G (2002) Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys Rev B 65(21):214303. doi:10.1103/PhysRevB.65.214303

    Article  Google Scholar 

  41. Huang JY, Wang W, Murphy CJ, Cahill DG (2014) Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation. Proc Natl Acad Sci U S A 111(3):906–911. doi:10.1073/pnas.1311477111

    Article  CAS  Google Scholar 

  42. Ekici O, Harrison RK, Durr NJ, Eversole DS, Lee M, Ben-Yakar A (2008) Thermal analysis of gold nanorods heated with femtosecond laser pulses. J Phys D Appl Phys 41(18):185501. doi:10.1088/0022-3727/41/18/185501

    Article  Google Scholar 

  43. Akemann W, Otto A (1994) Continuous secondary light emission from silver films: on the origin of the inelastic background in SERS. Surf Sci 307–309, Part B (0):1071–1075. doi:10.1016/0039-6028(94)91542-3

  44. Ikeda K, Suzuki S, Uosaki K (2013) Enhancement of SERS background through charge transfer resonances on single crystal gold surfaces of various orientations. J Am Chem Soc 135(46):17387–17392. doi:10.1021/ja407459t

    Article  CAS  Google Scholar 

  45. Mahajan S, Cole RM, Speed JD, Pelfrey SH, Russell AE, Bartlett PN, Barnett SM, Baumberg JJ (2009) Understanding the surface-enhanced raman spectroscopy “background”†. J Phys Chem C 114(16):7242–7250. doi:10.1021/jp907197b

    Article  Google Scholar 

  46. Andersen PC, Jacobson ML, Rowlen KL (2004) Flashy silver nanoparticles. J Phys Chem B 108(7):2148–2153. doi:10.1021/jp0306646

    Article  CAS  Google Scholar 

  47. Wu X, Yeow EKL (2008) Fluorescence blinking dynamics of silver nanoparticle and silver nanorod films. Nanotechnology 19(3):035706. doi:10.1088/0957-4484/19/03/035706

    Article  Google Scholar 

  48. Davies M, Wochnik A, Feil F, Jung C, Bräuchle C, Scheu C, Michaelis J (2012) Synchronous emission from nanometric silver particles through plasmonic coupling on silver nanowires. ACS Nano 6(7):6049–6057. doi:10.1021/nn3011224

    Article  CAS  Google Scholar 

  49. Clayton DA, Benoist DM, Zhu Y, Pan S (2010) Photoluminescence and spectroelectrochemistry of single Ag nanowires. ACS Nano 4(4):2363–2373. doi:10.1021/nn100102k

    Article  CAS  Google Scholar 

  50. Jacobson ML, Rowlen KL (2006) The role of O2 in SERS-active thin metal film photodynamics. J Phys Chem B 110(39):19491–19496. doi:10.1021/jp062738u

    Article  CAS  Google Scholar 

  51. Geddes CD, Parfenov A, Gryczynski I, Lakowicz JR (2003) Luminescent blinking of gold nanoparticles. Chem Phys Lett 380(3–4):269–272. doi:10.1016/j.cplett.2003.07.029

    Article  CAS  Google Scholar 

  52. Gaiduk A, Ruijgrok PV, Yorulmaz M, Orrit M (2011) Making gold nanoparticles fluorescent for simultaneous absorption and fluorescence detection on the single particle level. Phys Chem Chem Phys 13(1):149–153. doi:10.1039/c0cp01389g

    Article  CAS  Google Scholar 

  53. Loumaigne M, Richard A, Laverdant J, Nutarelli D, Débarre A (2010) Ligand-induced anisotropy of the two-photon luminescence of spherical gold particles in solution unraveled at the single particle level. Nano Lett 10(8):2817–2824. doi:10.1021/nl100737y

    Article  CAS  Google Scholar 

  54. Zhao T, Jiang X-F, Gao N, Li S, Zhou N, Ma R, Xu Q-H (2013) Solvent-dependent two-photon photoluminescence and excitation dynamics of gold nanorods. J Phys Chem B 117(49):15576–15583. doi:10.1021/jp405929w

    Article  CAS  Google Scholar 

  55. Tomita K, Ishioka T, Harata A (2012) Development of an anion probe: detection of sulfate ion by two-photon fluorescence of gold nanoparticles. Anal Sci 28(12):1139–1144. doi:10.2116/analsci.28.1139

    Article  CAS  Google Scholar 

  56. Haynes CL, Van Duyne RP (2003) Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B 107(30):7426–7433. doi:10.1021/jp027749b

    Article  CAS  Google Scholar 

  57. Chen K, Stoianov SV, Bangerter J, Robinson HD (2010) Restricted meniscus convective self-assembly. J Colloid Interface Sci 344(2):315–320. doi:10.1016/j.jcis.2010.01.010

    Article  CAS  Google Scholar 

  58. Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104(45):10549–10556. doi:10.1021/jp002435e

  59. Chen K, Durak C, Heflin JR, Robinson HD (2007) Plasmon enhanced second-harmonic generation from ionically self-assembled multilayers film. Nano Lett 7(2):254–258. doi:10.1021/nl062090x

  60. Kelly KL, Coronado E, Zhao LL, Schatz GC (2002) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677. doi:10.1021/jp026731y

    Article  Google Scholar 

  61. West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photonics Rev 4(6):795–808. doi:10.1002/lpor.200900055

    Article  CAS  Google Scholar 

  62. Habenicht A, Olapinski M, Burmeister F, Leiderer P, Boneberg J (2005) Jumping nanodroplets. Science 309(5743):2043–2045. doi:10.1126/science.1116505

    Article  CAS  Google Scholar 

  63. Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR (2005) Silver nanowires as surface plasmon resonators. Phys Rev Lett 95(25):257403. doi:10.1103/PhysRevLett.95.257403

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Institute for Critical Technology and Applied Science (ICTAS) at Virginia Tech and by grants from the National Science Foundation under agreements CBET-0756693 and DMR-1006753. We thank Prof. Amanda Morris for assistance with the silver oxide reduction chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans D. Robinson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jao, CY., Magill, B.A., Chen, K. et al. Enhanced Multiphoton-Induced Luminescence in Silver Nanoparticles Fabricated with Nanosphere Lithography. Plasmonics 10, 87–98 (2015). https://doi.org/10.1007/s11468-014-9781-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9781-5

Keywords

Navigation