Skip to main content
Log in

Nanomaterials in nuclear engineering and radioecology

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Key results concerning large-scale application of nanomaterials in nuclear engineering are reviewed. The data on redox reactions of uranium and actinides in solutions and solid-phase transformations for the development of modern technologies for fuel reprocessing and handling of alkaline radioactive waste are discussed. The information concerning various methods for treatment of liquid radioactive waste with nanostructured sorption materials (carbon materials included) is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Anan’ev, I. G. Tananaev, and V. P. Shilov. “Heterogeneous catalytic redox reactions in the chemistry and technology of the nuclear fuel cycle,” Russ. Chem. Rev. 74, 1039 (2005).

    Article  Google Scholar 

  2. I. G. Tananaev, V. P. Shilov, and N. N. Krot. “Interaction of ameritium with some reducing agents on catalysts,” Radiokhimiya 28 (1), 92–94 (1986).

    Google Scholar 

  3. I. G. Tananaev and V. P. Shilov. “Plutonium (4) reduction by hydrazine in the presence of solid-phase catalysts in nitric acid solutions I. Platinum on silica gel,” Radiokhimiya 31 (6), 52–55 (1989).

    Google Scholar 

  4. I. G. Tananaev, V. I. Dzyubenko, and V. P. Shilov. “Plutonium (4) reduction by hydrazine in the presence of solid-phase catalysts in nitric acid solutions II. Ruthenium on silica gel,” Radiokhimiya 31 (6), 56–59 (1989).

    Google Scholar 

  5. I. G. Tananaev and V. P. Shilov. “Neptunium (IV) and (V) reduction by hydrazine in the presence of solidphase catalysts in nitric acid solutions,” Radiokhimiya 31 (6), 59–63 (1989).

    Google Scholar 

  6. V. M. Korotkevich, A. I. Milovanov, N. A. Mikhailova, S. N. Kruglov, and V. S. Terovskii, “Uranyl nitrate reduction on platinum catalyst,” in Proceedings of the 1st Russian Conference on Radiochemistry, Dubna, May 17–19, 1994, p. 202.

    Google Scholar 

  7. I. G. Tananaev and A. M. Fedoseev. “Sorbtion separation of neptunium and plutonium using anion exchangers catalysts based on heteropolycompounds,” Radiokhimiya 36 (5), 422–425 (1994).

    Google Scholar 

  8. I. G. Tananaev and A. M. Fedoseev. “Heteropolycompounds as solid phase catalysts in processes of actinide ion reduction with hydrazine in HNO3 solution,” Radiokhimiya 37 (1), 28–31 (1995).

    Google Scholar 

  9. I. G. Tananaev, V. P. Shilov, V. A. Matyukha, V. I. Dzyubenko, and N. N. Krot. “Sorbtion separation of neptunium and plutonium using anion exchangers-catalysts,” Radiokhimiya 36 (4), 329–332 (1994).

    Google Scholar 

  10. V. I. Dzyubenko, I. G. Tananaev, V. P. Shilov, V. A. Matyukha, and N. N. Krot, “Sorbtion separation of neptunium and plutonium using anion exchangerscatalysts,” in Proceedings of the 1st All-Russia Conference on Radiochemistry, Dubna, May 17–19, 1994, p. 174.

    Google Scholar 

  11. N. N. Krot, V. P. Shilov, V. I. Dzyubenko, V. A. Matyukha, and N. N. Malkova. “H2C2O4 decomposition in nitric acid solutions in the presence of solid-phase catalysts,” Radiokhimiya 36, 19–24 (1994).

    Google Scholar 

  12. N. N. Krot, V. P. Shilov, T. N. Bukhtiyarova, V. A. Matyukha, V. P. Starodumov, and N. N. Malkova. “Study of stoichiometry and mechanism of H2C2O4 decomposition in nitric acid solutions in the presence of solid-phase catalysts,” Radiokhimiya 37 (1), 1–9 (1995).

    Google Scholar 

  13. V. B. Kozlova, M. V. Logunov, I. G. Tananaev, and B. F. Myasoedov, “Development of methods for oxalic acid decomposition in the technological nitric acid solutions on PA Mayak,” in Proceedings of the 2nd Youth Scientific-Practical Conference on Nuclear-Industrial Complex of Ural: Problems and Prospects, Ozersk, Apr. 21–23, 2003, pp. 173–174.

    Google Scholar 

  14. A. V. Ananiev, J.-C. Broudic, Ph. Brossard, and N. N. Krot. “Heterogeneous catalytic denitration of nitric acid solutions,” Radiochim. Acta 78, 145 (1997).

    Article  Google Scholar 

  15. A. V. Ananiev, J.-C. Broudic, and Ph. Brossard, “Method for reducing nitrate and/or nitric acid concentration in an aqueous solutions,” US Patent No. 6383400 (2002).

    Google Scholar 

  16. “Development of technology for catalytic denitration of moderately active solutions in order to reduce the salt content before cementing,” Report No. TsL/7385 (2005).

  17. A. V. Ananiev, V. P. Shilov, and Ph. Brossard. “The urea decomposition in the process of the heterogeneous catalytic denitration of nitric acid solution. Part I. Kinetics of the reaction,” Appl. Catal. B: Environ. 45, 189–196 (2003).

    Article  Google Scholar 

  18. A. V. Ananiev, V. P. Shilov, and Ph. Brossard. “The urea decomposition in the process of the heterogeneous catalytic denitration of nitric acid solution. Part II. Reaction products and stoichiometry,” Appl. Catal. B: Environ. 45, 197–203 (2003).

    Article  Google Scholar 

  19. A. V. Ananiev, V. P. Shilov, and Ph. Brossard. “Kinetics of the platinum catalyzed hydrazoic acid decomposition in acidic media,” Appl. Catal. A: Gen. 257 (2), 152–156 (2003).

    Google Scholar 

  20. I. G. Tananaev. “Solid phase transforms of neptunium (V) compounds in alkaline, and carbonate media,” Radiokhimiya 33 (3), 15–19 (1991).

    Google Scholar 

  21. I. G. Tananaev. “On solid phase interaction of some neptunium (V) compounds with alkalis,” Radiokhimiya 33 (3), 19–24 (1991).

    Google Scholar 

  22. I. G. Tananaev, T. I. Potemkina, V. P. Perminov, and M. S. Grigor’ev. “On interaction of CsNpO2(NO3)3 with solid alkalis,” Radiokhimiya 33 (5), 41–46 (1991).

    Google Scholar 

  23. L. N. Khazimullina, E. G. Galkin, A. V. Mamykin, I. G. Tananaev, V. P. Kazakov, and B. F. Myasoedov. “Mass-spectrometric study of the solid-phase reaction of Na4XeO6.8H2O with U(SO4)2.4H2O,” Mendeleev Commun. 17, 18–19 (2007).

    Article  Google Scholar 

  24. L. N. Hazimullina, V. A. Antipin, A. V. Mamykin, I.G. Tananaev, V. P. Kazakov, and V. P. Myasoedov. “Chemiluminescence in the Solid-Phase Reaction of Powdered XeF2 and Na4XeO6nH2O with U(OH)4nH2O,” Radiochemistry 49, 41 (2007).

    Article  Google Scholar 

  25. V. P. Kazakov, I. G. Tananaev, and B. F. Myasoedov, “Chemiluminescence of uranium and transuranium elements,” in Proceedings of the 18th Mendeleev Congress on General and Applied Chemistry, Section 12: International Conference on Modern Radiochemistry- 2007, Russia, Moscow, 2007, Vol. 5, p. 2408.

    Google Scholar 

  26. L. N. Hazimullina, V. A. Antipin, A. V. Mamykin, I. G. Tananaev, V. P. Kazakov, and B. F. Myasoedov, “Chemiluminescence observed during solid-state interactions of Na4XeO6 and U(SO4)2.4H2O,” in Recent Advances in Actinide Science, Ed. by R. Alvarez, N. D. Bryan, and I. May (RSC, Thomas Graham House, Cambridge, UK, 2006), pp. 752–755.

  27. V. F. Peretroukchin, V. I. Silin, I. G. Tananaev, A. V. Kareta, and V. E. Trushina, “Decontamination of alkaline solutions from Tc and other fision products and from some actinides by reductive copricipitation and sorption of metals,” Report PNNL-11626 (Richland, USA, 1997), pp. 1–68.

    Google Scholar 

  28. N. A. Boudantseva, A. M. Fedosseev, I. G. Tananaev, A. A. Bessonov, and C. L. Delegard. “Capture of Pu (V), Np (V) and Pu (VI) from alkaline solutions by hydroxides of Pu (VI), Th (IV) and La (III),” J. Alloys Compd. 271–273, 231–235 (1998).

    Article  Google Scholar 

  29. I. G. Tananaev and B. F. Myasoedov, “Successes achieved and perspectives on actinides alkaline chemistry,” in Proceedings of the US/Russia Workshop on Actinides Science Relevant to Environment, Radioactive Waste Management and Migration Behavior of Actinides and Fission Products in Geosphere, Moscow, May 16–17, 2000, p. 13.

    Google Scholar 

  30. I. G. Tananaev, V. I. Silin, A. V. Kareta, V. E. Trushina, and V. P. Peretroukhin, “Decontamination of alkaline solutions from technetium and other fission products and from some actinides by reductive copricipitation and sorption on metals,” Report PNNL-11624 (Pacific Northwest National Laboratory Richland, USA, 1997).

    Google Scholar 

  31. S. Iijima, Nature 354, 56–58 (1991).

    Article  Google Scholar 

  32. R. Tenne, M. Homyonfer, and Y. Feldman, Chem. Mater. 10, 3225–3238 (1998).

    Article  Google Scholar 

  33. W. Tremel, Angew. Chem. Int. Ed. 38, 2175–2179 (1999).

    Article  Google Scholar 

  34. R. Tenne, Chem. Eur. J. 8, 5297–5304 (2002).

    Article  Google Scholar 

  35. G. R. Patzke, F. Krumeich, and R. Nesper, Angew. Chem. Int. Ed. 41, 2446–2461 (2002).

    Article  Google Scholar 

  36. R. Tenne, Angew. Chem. Int. Ed. 42, 5124–5132 (2003).

    Article  Google Scholar 

  37. E. G. Rakov, S. V. Khaustov, and S. A. Pomadchin, Russ. J. Inorg. Chem.} 44, 1646 (1997).

  38. A. L. Ivanovskii, Russ. Chem. Rev. 71, 175 (2002).

    Article  Google Scholar 

  39. S. V. Krivovichev, V. Kahlenberg, R. Kaindl, E. Mersdorf, I. G. Tananaev, and B. F. Myasoedov, Angew. Chem. Intern. Ed. 44, 1134–1136 (2005).

    Article  Google Scholar 

  40. S. V. Krivovichev, V. Kahlenberg, I. G. Tananaev, R. Kaindl, E. Mersdorf, and B. F. Myasoedov, J. Am. Chem. Soc. 127, 1072–1073 (2005).

    Article  Google Scholar 

  41. S. V. Krivovichev, I. G. Tananaev, V. Kahlenberg, R. Kaindl, and B. F. Myasoedov, Radiochemistry 47, 525 (2005).

    Article  Google Scholar 

  42. S. V. Krivovichev, V. Kahlenberg, I. G. Tananaev, and B. F. Myasoedov. “Uranyl selenates: from finite clusters to nanotubes,” Acta Crystallogr. (Suppl.) A61, C15 (2005).

    Article  Google Scholar 

  43. S. V. Krivovichev, P. C. Burns, I. G. Tananaev, and B. F. Myasoedov, “Nanostructured actinide compounds: an introduction,” in Structural Chemistry of Inorganic Actinide Compounds, Ed. by S. V. Krivovichev, P. C. Burns, and I. G. Tananaev (Elsevier, Nåtherlands, 2007), Chap. 12, pp. 443–457.

    Chapter  Google Scholar 

  44. S. V. Krivovichev, E. V. Alekseev, W. Depmeier, I. G. Tananaev, and B. F. Myasoedov, “New perspectives on microporous and nanotubular uranium compounds,” in Proceedings of the 18th Mendeleev Congress on General and Applied Chemistry, Section 12 International Conference on Modern Radiochemistry-2007, Moscow, Russia, 2007, Vol. 5, p. 2373.

    Google Scholar 

  45. S. V. Krivovichev, V. Kahlenberg, I. G. Tananaev, and B. F. Myasoedov. “Amine-templated uranium selenates with layered structures. I. Structural diversity of sheets with a U: Se ratio of 1:2,” Z. Anorg. Allg. Chem. 631, 2358–2364 (2005).

    Article  Google Scholar 

  46. S. V. Krivovichev and I. G. Tananaev. “Uranium oxide nanotubulenes as potential matrix for the radionuclide immobilization,” Zh. Ross. Khim. Obshch. Mendeleeva 49 (2), 115–119 (2005).

    Google Scholar 

  47. S. V. Krivovichev, I. G. Tananaev, and B. F. Myasoedov, “Organic/inorganic uranyl-based nanocomposites. Structural chemistry of partially ordered systems, nanoparticles and nanocomposites, in Proceedings of the Topical Meeting of the European Ceramic Society, June 27–29, 2006, St.-Petersburg, Russia, p. 12.

    Google Scholar 

  48. S. V. Krivovichev, P. C. Burns, I. G. Tananaev, and B. F. Myasoedov, “Nanostructured actinide compounds,” J. Alloys Comp. 444–445, 457–463 (2007).

    Article  Google Scholar 

  49. A. G. Krivitsky, I. V. Manakov, A. I. Bobilev, S. I. Rovny, and I. G. Tananaev, “Synthesis and study of the properties of new promising material, superdispersed uranium dioxide, for MOX-fuel fabrication,” in Proceedings of the 18th Mendeleev Congress on General and Applied Chemistry, Section 12 International Conference on Modern Radiochemistry-2007, Moscow, Russia, 2007, Vol. 5, p. 2423.

    Google Scholar 

  50. A. G. Krivitsky, I. V. Manakov, A. I. Bobilev, S. I. Rovny, and I. G. Tananaev, “Synthesis and study of the properties of superdispersed uranium dioxide UO2 for MOX-fuel fabrication,” in Proceedings of the Topic Meeting of the Europian Ceramic Society on Geometry, Information and Theoretical Crystallography of the Nanoworld, July 30–August 3, 2007 (Inst. Silicate Chemistry RAS, St.-Peterburg, Russia, 2007), pp. 78–80.

    Google Scholar 

  51. S. A. Kulyukhin, L. V. Mizina, and I. A. Rumer, “Study of termodistraction of CH3l–131 in gazeous stream,” in Proceedings of the All–Russian Conference on Radiochemistry, Dimitrograd, October 15–19, 2012, p. 244.

    Google Scholar 

  52. G. V. Kolesnikov, E. N. Mishkovskaya N. V. Boev, Yu. A. Ustynyuk, E. A. Kataev, and I. G. Tananaev, “Hybrid macrocycles as effective receptors for perrhenate and pertecnetate anions,” in Proceedings of the 18th Mendeleev Congress on General and Applied Chemistry, Section 12 International Conference on Modern Radiochemistry-2007, Moscow, Russia, 2007, Vol. 5, p. 2413.

    Google Scholar 

  53. E. A. Kataev, N. V. Boev, E. N. Mishkovskaya, G. V. Kolesnikov, J. L. Sessler, I. G. Tananaev, and Yu. A. Ustynyuk, “Oligopyrrole based artificial receptors for oxoanions,” in Proceedings of the 18th Mendeleev Congress on General and Applied Chemistry, Section 12 International Conference on Modern Radiochemistry- 2007, Moscow, Russia, 2007, Vol. 5, p. 2163.

    Google Scholar 

  54. E. A. Kataev, P. Melfi, N. V. Boev, G. V. Kolesnikov, I. G. Tananaev, and J. L. Sessler, “Binding of perhenate and pertechnetete anions by bipyrrole based reception,” in Proceedings of the 2nd International Symposium on Mcrocyclic and Supramolecular Chemistry, Salice Terme, Pavia, Italy, June 24–28, 2007, PSA 85.

    Google Scholar 

  55. E. K. Katayev, N. V. Boev, V. N. Khrustalev, Y. A. Ustynyuk, I. G. Tananaev, and J. L. Sessler. “Bipyrrole- and dipyrromethane-based amido-imine hybrid macrocycles. New receptors for oxoanions,” J. Org. Chem. 72, 2886–2896 (2007).

    Article  Google Scholar 

  56. O. B. Mokhodoeva, G. V. Myasoedova, I. V. Kubrakova, A. V. Nikulin, O. I. Artyushin, and I. L. Odinets. “New solid extractants for preconcentrating noble metals,” Russ. J. Anal. Chem. 65, 12 (2010).

    Article  Google Scholar 

  57. O. B. Mokhodoeva, D. A. Malikov, N. P. Molochnikova, E. A. Zakharchenko, S. A. Perevalov, G. V.Myasoedova, S. V. Mishchenko, Yu. M. Kulyako, and B. F. Myasoedov. “Carbon nanotubes: using possibility for the concentration of radionuclides,” Zh. Ross. Khim. Obshch. Mendeleeva 54 (3), 61 (2010).

    Google Scholar 

  58. I. L. Odinets, E. V. Sharova, O. I. Artyshin, K. A. Lyssenko, Y. V. Nelyubina, G. V. Myasoedova, N. P. Molochnikova, and E. A. Zakharchenro. “Novel class of functionalized ionic liquids with grafted CMPO-moieties for actinides and rare-earth elements recovery,” Dalton Trans. 39, 4170 (2010).

    Article  Google Scholar 

  59. T. S. Volkova, I. G. Tananaev, V. S. Volkov, and O. M. Slyunchev. “Removal of radionuclides from spent technical oils,” Radiochemistry 55, 129 (2013).

    Article  Google Scholar 

  60. T. S. Volkova, I. G. Tananaev, V. S. Volkov, and O. M. Slyunchev. “Chemical endurance of polymeric compounds containing radioactively contaminated spent vacuum oil,” Radiochemistry 55, 450 (2013).

    Article  Google Scholar 

  61. A. B. Sazonov, Aung Dzho Tkhun, E. P. Magamedbekov, A. V. Ponomarev, I. G. Tananaev, and B. F. Myasoedov. “Carbon sorbents for immobilization of tritiumcontaining waste oils,” Ross. Khim. Zh. 54 (3), 94–100 (2010).

    Google Scholar 

  62. T. S. Volkova and I. G. Tananaev. “The specific surface area as a parameter that affects the absorption capacity of the material to organic,” Radiat Saf., No. 1, 29–36 (2015).

    Google Scholar 

  63. A. Yu. Romanchuk, A. Slesarev, D. V. Kosynkin, and S. N. Kalmykov. “Graphene oxide for effective radionuclide removal,” Phys. Chem. Chem. Phys. 15, 2321–2327 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Tananaev.

Additional information

Original Russian Text © I.G. Tananaev, G.A. Sarychev, B.F. Myasoedov, 2016, published in Rossiiskie Nanotekhnologii, 2016, Vol. 11, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tananaev, I.G., Sarychev, G.A. & Myasoedov, B.F. Nanomaterials in nuclear engineering and radioecology. Nanotechnol Russia 11, 63–72 (2016). https://doi.org/10.1134/S1995078016010158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078016010158

Keywords

Navigation