Skip to main content
Log in

Investigating the micro- and nanostructure of microfibrous biocompatible polyurethane scaffold by scanning probe nanotomography

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

This paper presents a study of three-dimensional micro- and nanosctucture of polyurethane dual scale biocompatible scaffold made by three-dimensional printing and electrospinning. The three-dimensional structure of the scaffold was analyzed by scanning probe nanotomography with use of an experimental setup combining an ultramicrotome and a scanning probe microscope. We performed a quantitative analysis of microporosity, nanoroughness, and three-dimensional morphology parameters of the scaffold. The electrospun scaffold consists of a network of microfibers with diameter ranging from 1.7 to 6.0 μm. The measured mean microfiber diameter is 3.54 ± 1.23 μm. The volume porosity of the electrospun scaffold is 72.5%, while mean surface area to volume ration is 0.28 μm–1 and mean nanoroughness of microfiber surface is 22.1 ± 3.0 nm. The quantitative characteristics of the micro- and nanostructure of elecrospun polyurethane matrices secure the high efficacy of its usage for increasing the biocompatibility of dual-scale hybrid bioengineered scaffolds for regenerative medicine tasks. The use of scanning probe nanotomography for analyzing threedimensional morphology characteristics and the topology of electrospun microfiber systems enables us to improve the efficiency of development of new bioengineered products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Li and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?,” Adv. Mater. 16, 1151 (2004).

    Article  Google Scholar 

  2. W. E. Teo and S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies,” Nanotechnology 17 (14), 89 (2006).

    Article  Google Scholar 

  3. D. I. Braghirolli, D. Steffens, and P. Pranke, “Electrospinning for regenerative medicine: a review of the main topics,” Drug. Discov. Today 19, 743 (2014).

    Article  Google Scholar 

  4. D. Kai, S. S. Liow, and X. J. Loh, “Biodegradable polymers for electrospinning: towards biomedical applications,” Mater. Sci. Eng. C: Mater. Biol. Appl. 45, 659 (2014).

    Article  Google Scholar 

  5. L. Jin, T. Wang, M. L. Zhu, M. K. Leach, Y. I. Naim, J. M. Corey, Z. Q. Feng, and Q. Jiang, “Electrospun fibers and tissue engineering,” J. Biomed. Nanotechnol. 8 (1), 1 (2012).

    Article  Google Scholar 

  6. Q. P. Pham, U. Sharma, and A. G. Mikos, “Electrospinning of polymeric nanofibers for tissue engineering applications: a review,” Tissue Eng. 12, 1197 (2006).

    Article  Google Scholar 

  7. Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, “Potential of nanofiber matrix as tissue-engineering scaffolds,” Tissue Eng. 11, 101 (2005).

    Article  Google Scholar 

  8. G. C. Ingavle and J. K. Leach, “Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering,” Tissue Eng. Part B: Rev. 20, 277 (2014).

    Article  Google Scholar 

  9. R. A. Rezende, F. D. S. Azevedo, F. D. Pereira, V. Kasyanov, X. Wen, J. V. L. de Silva, and V. V. Mironov, “Nanotechnological strategies for biofabrication of human organs,” J. Nanotechnol. 2012, 149264 (2012).

    Google Scholar 

  10. S. A. Guelcher, “Biodegradable polyurethanes: synthesis and applications in regenerative medicine,” Tissue Eng. Part B: Rev. 14, 3 (2008).

    Article  Google Scholar 

  11. A. Baji, Y. W. Mai, S. C. Wong, M. Abtahi, and P. Chen, “Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties,” Compos. Sci. Technol. 70, 703 (2010).

    Article  Google Scholar 

  12. S. Khorshidi, A. Solouk, H. Mirzadeh, S. Mazinani, J. M. Lagaron, S. Sharifi, and S. Ramakrishna, “A review of key challenges of electrospun scaffolds for tissue-engineering applications,” J. Tissue Eng. Regen. Med. (2015). doi:. doi 10.1002/term.1978

    Google Scholar 

  13. A. E. Efimov, A. G. Tonevitsky, M. Dittrich, and N. B. Matsko, “Atomic force microscope (AFM) combined with the ultramicrotome: a novel device for the serial section tomography and AFM/TEM complementary structural analysis of biological and polymer samples,” J. Microsc. 226, 207 (2007).

    Article  Google Scholar 

  14. A. E. Efimov, H. Gnaegi, R. Schaller, W. Grogger, F. Hofer, and N. B. Matsko, “Analysis of native structure of soft materials by cryo scanning probe tomography,” Soft Matter 8, 9756 (2012).

    Article  Google Scholar 

  15. A. Alekseev, A. Efimov, K. Lu, and J. Loos, “Threedimensional electrical property reconstruction of conductive nanocomposites with nanometer resolution,” Adv. Mater. 21, 4915 (2009).

    Article  Google Scholar 

  16. K. E. Mochalov, A. E. Efimov, A. Bobrovsky, I. I. Agapov, A. A. Chistyakov, V. A. Oleinikov, A. Sukhanova, and I. Nabiev, “Combined scanning probe nanotomography and optical microspectroscopy: a correlative technique for 3D characterization of nanomaterials,” ACS Nano 7, 8953 (2013).

    Article  Google Scholar 

  17. A. E. Efimov, M. M. Moisenovich, A. G. Kuznetsov, L. A. Safonova, M. M. Bobrova, and I. I. Agapov, “Investigation of micro- and nanostructure of biocompatible scaffolds from regenerated fibroin of Bombix mori by scanning probe nanotomography,” Nanotechnol. Russ. 9, 688 (2014).

    Article  Google Scholar 

  18. A. E. Efimov, M. M. Moisenovich, V. G. Bogush, and I. I. Agapov, “3D nanostructural analysis of silk fibroin and recombinant spidroin 1 scaffolds by scanning probe nanotomography,” RSC Adv. 4, 60943 (2014).

    Article  Google Scholar 

  19. Y. W. Fan, F. Z. Cui, S. P. Hou, Q. Y. Xu, L. N. Chen, and I. S. Lee, “Culture of neural cells on silicon wafers with nanoscale surface topography,” J. Neurosci. Methods 17, 120 (2002).

    Google Scholar 

  20. T. J. Webster, R. W. Siegel, and R. Bizios, “Osteoblast adhesion on nanophase ceramics,” Biomaterials 20, 1221 (1999).

    Article  Google Scholar 

  21. S. D. McCullen, D. R. Stevens, W. A. Roberts, L. I. Clarke, S. H. Bernacki, R. E. Gorga, and E. G. Loboa, “Characterization of electrospun nanocomposite scaffolds and biocompatibility with adiposederived human mesenchymal stem cells,” Int. J. Nanomed. 2, 253 (2007).

    Google Scholar 

  22. J. Nam, Y. Huang, S. Agarwal, and J. Lannutti, “Improved cellular infiltration in electrospun fiber via engineered porosity,” Tissue Eng. 13, 2249 (2007).

    Article  Google Scholar 

  23. B. S. Kim and D. J. Mooney, “Development of biocompatible synthetic extracellular matrices for tissue engineering,” Trends Biotechnol. 16, 2240 (1998).

    Article  Google Scholar 

  24. B. Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, “Polymeric scaffolds in tissue engineering application: a review,” Int. J. Polym. Sci. 2011, 290602 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Agapova.

Additional information

Original Russian Text © A.E. Efimov, O.I. Agapova, V.A. Parfenov, F.D.A.S. Pereira, E.A. Bulanova, V.A. Mironov, I.I. Agapov, 2015, published in Rossiiskie Nanotekhnologii, 2015, Vol. 10, Nos. 11–12.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimov, A.E., Agapova, O.I., Parfenov, V.A. et al. Investigating the micro- and nanostructure of microfibrous biocompatible polyurethane scaffold by scanning probe nanotomography. Nanotechnol Russia 10, 925–929 (2015). https://doi.org/10.1134/S1995078015060038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015060038

Keywords

Navigation