Skip to main content
Log in

Acute inhalation toxicity of manganese oxide nanoparticles

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Manganese oxides have been synthesized by the interaction of Mn2+ and Mn in the presence of nanoreactors: cetyltrimethylammonium bromide micelles that were not present in the final product composition. The synthesized substance is investigated using scanning electron microscopy, X-ray diffraction analysis, dynamic light scattering, the Brunauer-Emmett-Teller method, and the method of Barrett-Joyner-Halenda. It is determined that the substance under examination is a filamentous nanometer-scale material with a cross-section size up to 100 nm. The acute inhalation toxicity study is performed according to the interstate standard using the method of acute-toxicity class determination (ATC method) (OECD, Test no. 436:2008, IDT). The ATC method allows us to see that synthesized nanosized manganese oxide has an acute toxicity property when inhaled as an aerosol. Upon 4-h exposure to Wistar rats weighing 190 ± 10g, CL50 is 0.12 mg/L. The clinical picture of acute intoxication is characterized by irritation, neurotoxic effects, and respiratory depression. According to CL50 (>0.05–0.5), mg/L criterion, synthesized nanosized manganese oxide belongs to hazard class 2 in accordance with Globally Harmonized System of Classification and Labelling of Chemicals (GHS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Trusov, V. P. Fedotov, L. B. Kras’ko, V. A. Grinberg, and A. M. Skundin, RF Patent No. 2396638 (07.05.2009).

  2. The World’s Manufacturer of Engineered & Advanced Materials. American Elements. http://www.americanelements.com/mnoxnp.html (Assessed 23.06.2014).

  3. E. A. Dontsova, “Sensor electrodes based on manganese dioxide nanoparticles,” Candidate’s Dissertation in Chemical Sciences (Moscow, 2011).

    Google Scholar 

  4. D. Stefanescu, A. Khoshnan, P. Patterson, and J. Hering, “Neurotoxicity of manganese oxide nanomaterials,” J. Nanopart. Res., No. 11 (8), 1957–1969 (2009).

    Google Scholar 

  5. M. Hussan Saber, “The interaction of manganes nanoparticles with pc-12 cells induces dopamine depletion,” Toxicol. Sci. 92(2), 456–463 (2006).

    Article  Google Scholar 

  6. R. Frick, B. Müller-Edenborn, A. Schlicker, and B. Rothen-Rutishauser, “Comparison of manganese oxide nanoparticles and manganese sulfate with regard to oxidative stress, uptake and apoptosis in alveolar epithelial cells,” Toxicol. Lett., No. 205, 163–172 (2011). doi: 10.10.1016/j.toxlet.2011.05.103710.1016/j.toxlet.2011.05.1037

    Google Scholar 

  7. A. Elder, R. Gelein, V. Silva, T. Feikert, L. Opanashuk, J. Carter, R. Potter, A. Maynard, Y. Ito, J. Finkelstein, and G. Oberdörster, “Translocation of inhaled ultrafine manganese oxide particles to the central nervous system,” Environ. Health Perspect., No. 114, 1172–1178 (2006).

    Google Scholar 

  8. G. Oberdorster, Z. Sharp, and V. Atudorei, “Translocation of inhaled ultrafine particles to the brain,” Inhal. Toxicol., No. 16, 437–445 (2004).

    Google Scholar 

  9. V. Meynen, P. Cool, and E. F. Vansant, “Verified syntheses of mesoporous materials,” Microporous Mesoporous Mater., No. 125, pp. 170–223 (2009).

    Google Scholar 

  10. C. Ostiguy, P. Asselin, S. Malo, and D. Nadeau, “Prise en charge du manganisme d’origine professionnelle: consensus d’un groupe d’experts,” Rapport IRSST No. 416 (IRSST, Montreal, 2005).

    Google Scholar 

  11. J. Wang, M. Rahman, H. Duhart, and G. Newport, “Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles,” NeuroToxicol., No. 30, 926–933 (2009).

    Google Scholar 

  12. E. Horváth, Z. Máté, S. Takács, and P. Pusztai, “General and electrophysiological toxic effects of manganese in rats following subacute administration in dissolved and nanoparticle form,” Sci. World J. (2012). http://dx.doi.org/doi10.1100/2012/520632 (Assessed 23.06.2014).10.1100/2012/520632

    Google Scholar 

  13. H. Afeseh Ngwa, A. Kanthasamy, Y. Gu, and N. Fang, “Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells,” Toxicol. Appl. Pharmacol., No. 256, 227–240 (2011).

    Google Scholar 

  14. G. Oberdorster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environ. Health Perspect., No. 7, 823–839 (2005).

    Google Scholar 

  15. P. L. Crittenden and N. M. Filipov, “Manganeseinduced potentiation of in vitro proinflammatory cytokine production by activated microglial cells is associated with persistent activation of p38 MAPK,” Toxicol. in Vitro, No. 22, 18–27 (2008).

    Article  Google Scholar 

  16. Professional Health Risks. Handbook, Ed. by N. F. Izmerov and E. I. Denisov (Trovant, Moscow, 2003) [in Russian].

    Google Scholar 

  17. L. Sárközi, E. Horváth, Z. Kónya, and I. Kiricsi, “Subacute intratracheal exposure of rats to manganese nanoparticles: behavioral, electrophysiological, and general toxicological effects,” Inhal Toxicol., Suppl. 1, 83–91 (2009).

    Article  Google Scholar 

  18. N. V. Zaitseva, M. A. Zemlyanova, V. N. Zvezdin, and T. I. Akafieva, “Biological effects of manganese oxide nanoparticles after peroral intake,” J. Pharm. Nutrition Sci. 3(4) (2013). http://dx.doi.org/doi10.6000/1927-5951.2013.03.04.3 (Assessed 23.06.2014).10.6000/1927-5951.2013.03.04.3

    Google Scholar 

  19. Nanotechnology Research Directions: IWGN Workshop Report - Vision for Nanotechnology R&D in the Next Decade, Ed. by M. C. Roco, S. Williams and P. Alivisatos (WTEC, Loyola College in Maryland, 1999).

    Google Scholar 

  20. S. Gregg and K. Sing, Adsorption, Surface Area and Porosity (Acad., New York, 1982).

    Google Scholar 

  21. E. P. Barrett, L. G. Joyner, and P. P. Halenda, “The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms,” J. Am. Chem. Soc. 73, 373–380 (1951).

    Article  Google Scholar 

  22. L. Wisanti, Xihong Lin, R. F. Herrick., S. C. Fang., J. M. Cavallari, et al., “Neuropsychological effects of low-level manganese exposure in welders,” Neurotoxicology 32(2), 171–179 (2011).

    Article  Google Scholar 

  23. A Guide to The Globally Harmonized System of Classification and Labelling of Chemicals (GHS). www.osha.gov/dsg/hazcom/ghs.html (Assessed 23.06.2014).

  24. N. V. Zaitseva, M. A. Zemlyanova, V. N. Zvezdin, E. V. Saenko, A. V. Tarantin, R. R. Makhmudov, O. V. Lebedinskaya, S. V. Melekhin, and T. I. Akaf’eva, “Toxicological-hygienic estimation of nano- and microdispersed manganese (III, IV) oxide safety,” Vopr. Pitan. 81(5), 13–19 (2012).

    Google Scholar 

  25. Tao Li, Tingting Shi, Xiaobo Li, Shuilin Zeng, Lihong Yin, and Yuepu Pu, “Effects of nano-MnO2 on dopaminergic neurons and the spatial learning capability of rats,” Int. J. Environ. Res. Public Health, No. 11, 7918–7930 (2014). doi: doi 10.3390/ijerph110807918

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Zaitseva.

Additional information

Original Russian Text © N.V. Zaitseva, M.A. Zemlyanova, V.N. Zvezdin, T.I. Akafieva, E.V. Saenko, 2015, published in Rossiiskie Nanotekhnologii, 2015, Vol. 10, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitseva, N.V., Zemlyanova, M.A., Zvezdin, V.N. et al. Acute inhalation toxicity of manganese oxide nanoparticles. Nanotechnol Russia 10, 468–474 (2015). https://doi.org/10.1134/S1995078015030180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015030180

Keywords

Navigation