Skip to main content
Log in

Investigation of micro- and nanostructure of biocompatible scaffolds from regenerated fibroin of Bombix mori by scanning probe nanotomography

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

This paper presents a study of three-dimensional micro- and nanosctuctures of porous biocompatible matrices from regenerated fibroin and a quantitative analysis of their microporosity parameters. An analysis of the three-dimensional structure of matrices has been carried out by scanning probe nanotomography with the use of an experimental setup combining an ultramicrotome and scanning probe microscope. The formation of a three-dimensional network of interconnected pores with characteristic dimensions ranging from 1.7 to 6.0 μm is observed in the bulk volume of studied matrices. The measured mean pore diameter is 3.54 ± 1.23 μm; the mean pore wall thickness is 672 ± 282 nm. The volume porosity of macropore walls is 65.7%, while the volume fraction of pores interconnected in large pore clusters is more than 80% of the whole pore volume. Quantitative characteristics of porous micro- and nanostructures of matrices obtained as a result of the study show a significant degree of porosity and percolation of micropores, which correlates with the reported high efficiency of tissue regeneration on such matrices. The use of scanning probe nanotomography to analyze three-dimensional morphology characteristics and the topology of micro- and nanopore systems enables us to improve the efficiency of developing new biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Mandal and S. C. Kundu, “Cell proliferation and migration in silk fibroin 3D scaffolds,” Biomaterials 30, 2956 (2009).

    Article  Google Scholar 

  2. J. Gao, P. M. Crapo, and Y. Wang, “Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering,” Tissue Eng. 12, 917 (2006).

    Article  Google Scholar 

  3. A. E. Efimov, A. G. Tonevitsky, M. Dittrich, and N. B. Matsko, “Atomic force microscope (AFM) combined with the ultramicrotome: a novel device for the serial section tomography and AFM/TEM complementary structural analysis of biological and polymer samples,” J. Microscopy 226(3), 207 (2007).

    Article  Google Scholar 

  4. A. E. Efimov, H. Gnaegi, R. Schaller, W. Grogger, F. Hofer, and N. B. Matsko, “Analysis of native structure of soft materials by cryo scanning probe tomography,” Soft Matter 8, 9756 (2012).

    Article  Google Scholar 

  5. A. Alekseev, A. Efimov, K. Lu, and J. Loos, “Threedimensional electrical property reconstruction of conductive nanocomposites with nanometer resolution, Adv. Mater. 21(48), 4915 (2009).

    Article  Google Scholar 

  6. K. E. Mochalov, A. E. Efimov, A. Yu. Bobrovsky, I. I. Agapov, A. A. Chistyakov, V. A. Oleinikov, and I. Nabiev, “High-resolution 3D structural and optical analyses of hybrid or composite materials by means of scanning probe microscopy combined with the ultramicrotome technique: an example of application to engineering of liquid crystals doped with fluorescent quantum dots,” Proc. SPIE 8767, 876708 (2013).

    Article  Google Scholar 

  7. K. E. Mochalov, A. E. Efimov, A. Bobrovsky, I. I. Agapov, A. A. Chistyakov, V. A. Oleinikov, A. Sukhanova, and I. Nabiev, “Combined scanning probe nanotomography and optical microspectroscopy: a correlative technique for 3D characterization of nanomaterials,” ACS Nano. 7(10), 8953 (2013).

    Article  Google Scholar 

  8. C. Vepari and D. L. Kaplan, “Silk as a biomaterial,” Progr. Polymer Sci. 32, 991 (2007).

    Article  Google Scholar 

  9. B. Kundu, R. Rajkhowa, S. C. Kundu, and X. Wang, “Silk fibroin biomaterials for tissue regenerations,” Adv. Drug Delivery Rev. 65, 457 (2013).

    Article  Google Scholar 

  10. Y. X. He, N. N. Zhang, W. F. Li, N. Jia, B. Y. Chen, K. Zhou, J. Zhang, ChenY. Yuxing, and C. Z. Zhou, “N-terminal domain of Bombyx mori fibroin mediates the assembly of silk in response to pH decrease,” J. Molec. Biol. 418, 197 (2012).

    Article  Google Scholar 

  11. E. Panas-Perez, C. J. Gatt, and M. G. Dunn, “Development of a silk and collagen fiber scaffold for anterior cruciate ligament reconstruction,” J Mater. Sci.: Mater. Med. 24, 257 (2013).

    Google Scholar 

  12. A. M. Ghaznavi, L. E. Kokai, M. L. Lovett, D. L. Kaplan, and K. G. Marra, “Silk fibroin conduits: a cellular and functional assessment of peripheral nerve repair,” Ann. Plast. Surgery 66(3), 273 (2011).

    Article  Google Scholar 

  13. Y. Nakazawa, M. Sato, R. Takahashi, D. Aytemiz, C. Takabayashi, T. Tamura, S. Enomoto, M. Sata, and T. Asakura, “Development of small-diameter vascular grafts based on silk fibroin fibers from Bombyx mori for vascular regeneration,” J. Biomater. Sci., Polym.Ed. 22, 195 (2013).

    Article  Google Scholar 

  14. A. M. A. Shadforth, K. A. George, A. S. Kwan, T. V. Chirila, and D. G. Harkin, “The cultivation of human retinal pigment epithelial cells on Bombyx mori silk fibroin,” Biomaterials 33, 4110 (2012).

    Article  Google Scholar 

  15. E. S. Gil, B. Panilaitis, E. Bellas, and D. L. Kaplan, “Functionalized silk biomaterials for wound healing,” Adv. Healthcare Mater. 2, 206 (2013).

    Article  Google Scholar 

  16. Y. Ni, X. Zhao, L. Zhou, Z. Shao, W. Yan, X. Chen, Z. Cao, Z. Xue, and J. J. Jiang, “Radiologic and histologic characterization of silk fibroin as scaffold coating for rabbit tracheal defect repair,” Otolar. Head Neck Surg. 139, 256 (2008).

    Article  Google Scholar 

  17. S. Sundelacruz and D. L. Kaplan, “Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine,” Semin. Cell Develop. Biol. 20, 646 (2009).

    Article  Google Scholar 

  18. M. M. Moisenovich, O. Pustovalova, J. Shackelford, T. V. Vasiljeva, T. V. Druzhinina, Y. A. Kamenchuk, V. V. Guzeev, O. S. Sokolova, V. G. Bogush, V. G. Debabov, M. P. Kirpichnikov, and I. I. Agapov, “Tissue regeneration in vivo within recombinant spidroin 1 scaffolds,” Biomaterials 33(15), 3887 (2012).

    Article  Google Scholar 

  19. I. I. Agapov, M. M. Moisenovich, T. V. Vasil’eva, O. L. Pustovalova, A. S. Kon’kov, A. Yu. Arkhipova, O. S. Sokolova, V. G. Bogush, V. I. Sevast’yanov, V. G. Debabov, and M. P. Kirpichnikov, “Biodegradable matrixes made of regenerated Bombyx mori silk,” Dokl. Akad. Nauk 433(5), 699 (2010).

    Google Scholar 

  20. H. Scher and R. Zallen, “Critical density in percolation processes,” J. Chem. Phys. 53, 3759 (1970).

    Article  Google Scholar 

  21. A. Hunt and R. Ewing, Percolation Theory for Flow in Porous Media, (Berlin, Heidelberg, Springer, 2009).

    Google Scholar 

  22. R. F. Padera and C. K. Colton, “Time course of membrane microarchitecture-driven neovascularization,” Biomaterials 17, 277 (1996).

    Article  Google Scholar 

  23. J. D. Salvi, J. Y. Lim, and H. J. Donahue, “Increased mechanosensitivity of cells cultured on nanotopographies,” J. Biomech. 43, 3058 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Agapov.

Additional information

Original Russian Text © A.E. Efimov, M.M. Moisenovich, A.G. Kuznetsov, L.A. Safonova, M.M. Bobrova, I.I. Agapov, 2014, published in Rossiiskie Nanotekhnologii, 2014, Vol. 9, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimov, A.E., Moisenovich, M.M., Kuznetsov, A.G. et al. Investigation of micro- and nanostructure of biocompatible scaffolds from regenerated fibroin of Bombix mori by scanning probe nanotomography. Nanotechnol Russia 9, 688–692 (2014). https://doi.org/10.1134/S1995078014060081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078014060081

Keywords

Navigation