Skip to main content
Log in

Predictive modeling of formation of carbon nanostructures

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Modern methods of predictive modeling and progress in understanding the mechanisms of self-assembly of carbon atoms into perfect carbon nanostructures achieved using these methods are described. The concept of multiscale modeling which makes it possible to model the formation of carbon nanostructures based on the first principles and in which the role of experimental data is restricted to verification of the models developed is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. E. Lozovik and A. M. Popov, Usp. Fiz. Nauk 177, 786 (2007).

    Article  Google Scholar 

  2. A. V. Eletskii, Usp. Fiz. Nauk 177, 233 (2007).

    Article  Google Scholar 

  3. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  CAS  Google Scholar 

  4. A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, and D. N. Krasikov, Usp. Fiz. Nauk 181, 233 (2011).

    Article  CAS  Google Scholar 

  5. A. V. Krasheninnikov and K. Nordlund, J. Appl. Phys. 107, 071301 (2010).

    Article  CAS  Google Scholar 

  6. S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, and J. K. Norskov, Nature 427, 426 (2004).

    Article  CAS  Google Scholar 

  7. M. Moors, H. Amara, T. V. de Bocarme, C. Bichara, F. Ducastelle, N. Kruse, J.-C. Charlier, ACS Nano 3, 511 (2009).

    Article  CAS  Google Scholar 

  8. R. Sharma, P. Rez, M. Brown, G. Du, and M. M. J. Treacy, Nanotecnology 18, 125602 (2007).

    Article  CAS  Google Scholar 

  9. P. J. F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty First Century (Cambridge Univ. Press, Cambridge, 1999; Tekhnsfera, Moscow, 2003).

    Google Scholar 

  10. E. G. Rakov, Nanotubes and Fullerenes (Universitetskaya Kniga, Moscow, 2006) [in Russian].

    Google Scholar 

  11. A. Szabó, C. Perri, A. Csató, G. Giordano, D. Vuono, and J. B. Nagy, Materials 3, 3092 (2010).

    Article  CAS  Google Scholar 

  12. S. B. Sinnott and R. Andrews, Crit. Rev. Solid State Mater. Sci. 26, 145 (2001).

    Article  CAS  Google Scholar 

  13. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  14. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  15. H. Jonsson, J. Mills, and K. W. Jacobsen, “Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions,” in Classical and Quantum Dynamics in Condensed Phase Simulations, Ed. by B. J. Berne, G. Cicotti, and D. F. Coker (Word Scientific, Singapore, 1998) pp. 385–404.

    Chapter  Google Scholar 

  16. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

    Google Scholar 

  17. M. J. Field, A Practical Introduction to the Simulation of Molecular Systems (Cambridge Univ. Press, Cambridge, 2007).

    Book  Google Scholar 

  18. K. Binder and D. Heermann, Monte Carlo Simulation in Statistical Physics. An Introduction (Springer, Berlin-Heidelberg-New York, 2010).

    Google Scholar 

  19. M. S. Daw and M. I. Baskes, Phys. Rev. 29, 6443 (1984).

    Article  CAS  Google Scholar 

  20. M. I. Baskes, Phys. Rev. B 46, 2727 (1992).

    Article  CAS  Google Scholar 

  21. A. P. Sutton and J. Chen, Philos. Mag. Lett. 61, 139 (1990).

    Article  Google Scholar 

  22. D. W. Brenner, Phys. Rev. B 42, 9458 (1990).

    Article  CAS  Google Scholar 

  23. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002).

    Article  CAS  Google Scholar 

  24. J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).

    Article  CAS  Google Scholar 

  25. J. Tersoff, Phys. Rev. B 37, 6991 (1988).

    Article  Google Scholar 

  26. W. Xiao, M. I. Baskes, and K. Cho, Surf. Sci. 603, 1985 (2009).

    Article  CAS  Google Scholar 

  27. Y. Yamaguchi and S. Maruyama, Eur. Phys. J. D 9, 385 (1999).

    Article  CAS  Google Scholar 

  28. Y. Shibuta and S. Maruyama, Comp. Mater. Sci 39, 842 (2007).

    Article  CAS  Google Scholar 

  29. A. Martinez-Limia, J. Zhao, and P. B. Balbuena, J. Mol. Model 13, 595 (2007).

    Article  CAS  Google Scholar 

  30. F. Ding, K. Bolton, and A. Rosén, J. Phys. Chem. B 108, 17369 (2004).

    Article  CAS  Google Scholar 

  31. I. V. Lebedeva, A. A. Knizhnik, A. M. Popov, and B. V. Potapkin, J. Phys. Chem. C 116, 6572 (2012).

    Article  CAS  Google Scholar 

  32. J. E. Mueller, A. C. T. van Duin, and W. A. Goddard III, J. Phys. Chem. C 114, 4939 (2010).

    Article  CAS  Google Scholar 

  33. K. D. Nielson, A. C. T. van Duin, J. Oxgaard, W.-Q. Deng, and W. A. Goddard III, J. Phys. Chem. A 109, 493 (2005).

    Article  CAS  Google Scholar 

  34. G. Zheng, H. A. Witek, P. Bobadova-Parvanova, S. Irle, D. G. Musaev, R. Prabhakar, K. Morokuma, J. Chem. Theory Comput. 3, 1349 (2007).

    Article  Google Scholar 

  35. H. Amara, J.-M. Roussel, C. Bichara, J.-P. Gaspard, and F. Ducastelle, Phys. Rev. B 79, 014109 (2009).

    Article  CAS  Google Scholar 

  36. E. C. Neyts, A. C. T. van Duin, and A. Bogaerts, J. Am. Chem. Soc. 133, 17225 (2011).

    Article  CAS  Google Scholar 

  37. I. V. Lebedeva, A. A. Knizhnik, A. V. Gavrikov, A. E. Baranov, B. V. Potapkin, S. J. Aceto, P.-A. Bui, C. M. Eastman, U. Grossner, D. J. Smith, and T. J. Sommerer, Carbon 49, 2508 (2011).

    Article  CAS  Google Scholar 

  38. A. Knizhnik, I. Lebedeva, A. Gavrikov, M. Belov, B. Potapkin, T. Sommerer, and C. Eastman, Mater. Res. Soc. Symp. Proc. 1204, 49 (2010).

    Google Scholar 

  39. H. S. Bengaard, J. K. Nørskov, J. Sehested, B. S. Clausen, L. P. Nielsen, A. M. Molenbroek, and J. R. Rostrup-Nielsen, J. Catal. 209, 365 (2002).

    Article  CAS  Google Scholar 

  40. S. Saadi, F. Abild-Pedersen, S. Helveg, J. Sehested, B. Hinnemann, C. C. Appel, and J. K. Nørskov, J. Phys. Chem. C 114, 11221 (2010).

    Article  CAS  Google Scholar 

  41. J. Xu and M. Saeys, J. Catal. 242, 217 (2006).

    Article  CAS  Google Scholar 

  42. F. Abild-Pedersen, J. K. Nørskov, J. R. Rostrup-Nielsen, J. Sehested, and S. Helveg, Phys. Rev. B 73, 115419 (2006).

    Article  CAS  Google Scholar 

  43. D. Cheng, G. Barcaro, J.-C. Charlier, M. Hou, and A. Fortunelli, J. Phys. Chem. C 115, 10537 (2011).

    Article  CAS  Google Scholar 

  44. J. Gao, Q. Yuan, H. Hu, J. Zhao, and F. Ding, J. Phys. Chem. C 115, 17695 (2011).

    Article  CAS  Google Scholar 

  45. J. Gao, J. Yip, J. Zhao, B. I. Yakobson, and F. Ding, J. Am. Chem. Soc. 133, 5009 (2011).

    Article  CAS  Google Scholar 

  46. H. Amara, C. Bichara, and F. Ducastelle, Phys. Rev. B 73, 113404 (2006).

    Article  CAS  Google Scholar 

  47. Q. Yuan, H. Hu, and F. Ding, Phys. Rev. Lett. 107, 156101 (2011).

    Article  CAS  Google Scholar 

  48. Y.-H. Shin and S. Hong, Appl. Phys. Lett. 92, 043103 (2008).

    Article  CAS  Google Scholar 

  49. J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, J.-C. Charlier, Phys. Rev. Lett. 87, 275504 (2001).

    Article  CAS  Google Scholar 

  50. J.-Y. Raty, F. Gygi, and G. Galli, Phys. Rev. Lett. 95, 096103 (2005).

    Article  CAS  Google Scholar 

  51. H. Amara, C. Bichara, and F. Ducastelle, Phys. Rev. Lett. 100, 056105 (2008).

    Article  CAS  Google Scholar 

  52. Y. Shibuta and S. Maruyama, Chem. Phys. Lett. 382, 381 (2003).

    Article  CAS  Google Scholar 

  53. J. Zhao, A. Martinez-Limia, and P. B. Balbuena, Nanotecnology 16, S575 (2005).

    Article  CAS  Google Scholar 

  54. J. C. Burgos, H. Reyna, B. I. Yakobson, and P. B. Balbuena, J. Phys. Chem. 114, 6952 (2010).

    CAS  Google Scholar 

  55. M. A. Ribas, F. Ding, P. B. Balbuena, and B. I. Yakobson, J. Chem. Phys. 131, 224501 (2009).

    Article  CAS  Google Scholar 

  56. F. Ding and K. Bolton, Nanotecnology 17, 543 (2006).

    Article  CAS  Google Scholar 

  57. F. Ding, A. Rosén, and K. Bolton, J. Chem. Phys. 121, 2775 (2004).

    Article  CAS  Google Scholar 

  58. Y. Shibuta and S. Maruyama, Chem. Phys. Lett. 437, 218 (2007).

    Article  CAS  Google Scholar 

  59. J. C. Burgos, E. Jones, and P. B. Balbuena, J. Phys. Chem. C 115, 7668 (2011).

    Article  CAS  Google Scholar 

  60. E. C. Neyts, Y. Shibuta, A. C. T. van Duin, and A. Bogaerts, ACS Nano 4, 6665 (2010).

    Article  CAS  Google Scholar 

  61. I. V. Lebedeva, A. A. Knizhnik, B. V. Potapkin, and A. A. Bagatur’yants, Physica E 40, 2589 (2008).

    Article  CAS  Google Scholar 

  62. S. L. Pirard, S. Douven, C. Bossuot, G. Heyen, and J.-P. Pirard, Carbon 45, 1167 (2007).

    Article  CAS  Google Scholar 

  63. S. L. Pirard, S. Douven, and J.-P. Pirard, Carbon 45, 3042 (2007).

    Article  CAS  Google Scholar 

  64. C. Klinke, J.-M. Bonard, and K. Kern, Phys. Rev. B 71, 035403 (2005).

    Article  CAS  Google Scholar 

  65. J.-W. Snoeck, G. F. Froment, and M. Fowles, J. Catal. 169, 240 (1997).

    Article  CAS  Google Scholar 

  66. J.-W. Snoeck, G. F. Froment, and M. Fowles, J. Catal. 169, 250 (1997).

    Article  CAS  Google Scholar 

  67. Y. Zhang and K. J. Smith, J. Catal. 231, 354 (2005).

    Article  CAS  Google Scholar 

  68. A. A. Puretzky, D. B. Geohegan, S. Jesse, I. N. Ivanov, and G. Eres, Appl. Phys. A 81, 223 (2005).

    Article  CAS  Google Scholar 

  69. D. H. Lee, S. O. Kim, and W. J. Lee, J. Phys. Chem. C 114, 3454 (2010).

    Article  CAS  Google Scholar 

  70. N. Latorre, E. Romeo, J. I. Villacampa, F. Cazaña, C. Royo, A. Monzón, Catal. Today 154, 217 (2010).

    Article  CAS  Google Scholar 

  71. J. B. In, C. P. Grigoropoulos, A. A. Chernov, and A. Noy, ACS Nano 5, 9602 (2011).

    Article  CAS  Google Scholar 

  72. F. Ding, A. R. Harutyunyan, and B. I. Yakobson, Proc. Natl. Acad. Sci. USA 106, 2506 (2009).

    Article  Google Scholar 

  73. O. A. Louchev, T. Laude, Y. Sato, and H. Kanda, J. Chem. Phys. 118, 7622 (2003).

    Article  CAS  Google Scholar 

  74. O. A. Louchev, H. Kanda, A. Rosén, and K. Bolton, J. Chem. Phys. 121, 446 (2004).

    Article  CAS  Google Scholar 

  75. I. Denysenko and K. Ostrikov, Appl. Phys. Lett. 90, 251501 (2007).

    Article  CAS  Google Scholar 

  76. L. Delzeit, I. McAninch, B. A. Cruden, D. Hash, B. Chen, J. Han, and M. Meyyappan, J. Appl. Phys. 91, 6027 (2002).

    Article  CAS  Google Scholar 

  77. B. Hash and M. Meyyappan, J. Appl. Phys. 93, 750 (2003).

    Article  CAS  Google Scholar 

  78. R. K. Garg, J. P. Gore, and T. S. Fisher, in Proceedings of ASME 2005 International Mechanical Engineering Congress and Exposition, Orlando, Florida, 2005, p. 213.

  79. D. B. Hash, M. S. Bell, K. B. K. Teo, B. A. Cruden, W. I. Milne, and M. Meyyappan, Nanotecnology 16, 925 (2005).

    Article  CAS  Google Scholar 

  80. D. Hash, D. Bose, T. R. Govindan, and M. Meyyappan, J. Appl. Phys. 93, 6284 (2003).

    Article  CAS  Google Scholar 

  81. I. B. Denysenko, S. Xu, J. D. Long, P. P. Rutkevych, N. A. Azarenkov, and K. Ostrikov, J. Appl. Phys. 95, 2713 (2004).

    Article  CAS  Google Scholar 

  82. A. Okita, Y. Suda, A. Ozeki, H. Sugawara, Y. Sakai, A. Oda, and J. Nakamura, J. Appl. Phys. 99, 014302 (2006).

    Article  CAS  Google Scholar 

  83. H. Ma, L. Pan, and Y. Nakayama, Carbon 49, 854 (2011).

    Article  CAS  Google Scholar 

  84. M. Grujicic, G. Cao, and B. Gersten, Appl. Surf. Sci. 191, 223 (2002).

    Article  CAS  Google Scholar 

  85. M. Grujicic, G. Cao, and B. Gersten, J. Mater. Sci. 38, 1819 (2003).

    Article  CAS  Google Scholar 

  86. A. C. Lysaght and W. K. S. Chiu, Nanotecnology 20, 115605 (2009).

    Article  CAS  Google Scholar 

  87. A. C. Lysaght and W. K. S. Chiu, Nanotecnology 19, 165607 (2008).

    Article  CAS  Google Scholar 

  88. J. J. Lombardo and W. K. S. Chiu, Appl. Surf. Sci. 257, 5931 (2011).

    Article  CAS  Google Scholar 

  89. M. Grujicic, G. Cao, and B. Gersten, Mater. Sci. Eng., B 94, 247 (2002).

    Article  Google Scholar 

  90. M. Gulas, C. S. Cojocaru, F. Le Normand, and S. Farhat, Plasma Chem. Plasma Process. 28, 123 (2008).

    Article  CAS  Google Scholar 

  91. F. Le Normand, M. Gulas, P. Veis, C. S. Cojocaru, and J. E. Bourée, Thin Solid Films 517, 3466 (2009).

    Article  CAS  Google Scholar 

  92. L. Zhu, J. Xu, F. Xiao, H. Jiang, D. W. Hess, C. P. Wong, Carbon 45, 344 (2007).

    Article  CAS  Google Scholar 

  93. I. V. Lebedeva, A. A. Knizhnik, A. V. Gavrikov, A. E. Baranov, B. V. Potapkin, D. J. Smith, and T. J. Sommerer, J. Appl. Phys. 111, 074307 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Lebedeva.

Additional information

Original Russian Text © I.V. Lebedeva, A.A. Knizhnik, B.V. Potapkin, 2012, published in Rossiiskie Nanotekhnologii, 2012, Vol. 7, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedeva, I.V., Knizhnik, A.A. & Potapkin, B.V. Predictive modeling of formation of carbon nanostructures. Nanotechnol Russia 7, 575–587 (2012). https://doi.org/10.1134/S1995078012060079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078012060079

Keywords

Navigation