Skip to main content
Log in

Surface-enhanced raman scattering platforms on the basis of assembled gold nanorods

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

This study investigates the surface-enhanced Raman scattering (SERS) of rhodamine 6G (R6G) on the surface of gold nanorods (GNRs) assembled on silicon. Two samples of GNRs were synthesized, notably, GNR-670 and GNR-810, with the average (length × thickness) dimensions of 64 × 23 and 45 × 11 nm and with plasmon resonances at 670 and 810 nm, respectively. Three types of substrates were fabricated, namely, a low-density monolayer (S1), a densely packed monolayer with regions of the side-by-side assembly of nanorods (S2), and a fractal film (S3). The extinction spectra of densely packed substrates showed the appearance of new maxima and the broadening and the red-shift of plasmon resonances, as was consistent with the typical behavior of plasmonic particles interacting at an interparticle distance of about 1–3 nm (data of transmission electron microscopy). The intensities of SERS peaks of the rhodamine 6G increased for substrates S1, S2, and S3 as 1: 6: 260, respectively. There was no significant difference in the SERS efficiency of the substrates based on GNR-670 and GNR-810 rods. The average enhancement of the signal over an area of 400 μm was about 105 with a reproducibility error of ±10%, thus making the obtained substrates promising platforms for sensitive SERS chemical and biological sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. L. Fabelinskii, Usp. Fiz. Nauk 126, 124–152 (1978).

    CAS  Google Scholar 

  2. A. Smekal, Naturwissenschaften 11, 873–875 (1923).

    Article  CAS  Google Scholar 

  3. G. Landsberg and L. Mandelstam, Naturwissenschaften 16, 557–558 (1928).

    Article  CAS  Google Scholar 

  4. C. V. Raman and K. S. Krishnan, Nature 121, 501–502 (1928).

    Article  CAS  Google Scholar 

  5. J. Kneipp, H. Kneipp, and K. Kneipp, Chem. Soc. Rev. 37, 1052–1060 (2008).

    Article  CAS  Google Scholar 

  6. N. P. W. Pieczonka and R. F. Aroca, Chem. Soc. Rev. 37, 946–954 (2008).

    Article  CAS  Google Scholar 

  7. M. Fleischman, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett. 26, 163–166 (1974).

    Article  Google Scholar 

  8. D. L. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. 84, 1–20 (1977).

    Article  CAS  Google Scholar 

  9. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, Ann. Rev. Anal. Chem. 1, 601–626 (2008).

    Article  CAS  Google Scholar 

  10. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).

    Article  CAS  Google Scholar 

  11. S. Nie and S. R. Emory, Science 275, 1102–1106 (1997).

    Article  CAS  Google Scholar 

  12. X.-M. Qian and S. M. Nie, Chem. Soc. Rev. 37, 912–920 (2008).

    Article  CAS  Google Scholar 

  13. M. D. Porter, R. J. Lipert, L. M. Siperko, G. Wang, and R. Narayanan, Chem. Soc. Rev. 37, 1001–1011 (2008).

    Article  CAS  Google Scholar 

  14. M. Fana, G. F. S. Andradec, and A. G. Brolo, Anal. Chim. Acta 693, 7–25 (2011).

    Article  Google Scholar 

  15. R. A. Puebla and L. M. Liz-Marzan, Chem. Soc. Rev. 41, 43–51 (2012).

    Article  Google Scholar 

  16. K. M. Kosuda, J. M. Bingham, K. L. Wustholz, and R. P. Van Duyne, in Comprehensive Nanoscience and Technology, Ed. by D. L. Andrews, G. D. Scholes, and G. P. Wiederrecht (Academic, Oxford, 2011), Vol. 3, pp. 263–301.

    Chapter  Google Scholar 

  17. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, Anal. Chem. 79, 338A–346A (2007).

    Google Scholar 

  18. K. Ma, J. M. Yuen, N. C. Shah, J. T. Walsh, Jr., M. R. Glucksberg, and R. P. Van Duyne, Anal. Chem. 83, 9146–9152 (2011).

    Article  CAS  Google Scholar 

  19. G. S. Schatz and R. P. Van Duyne, in Handbook of Vibrational Spectroscopy, Ed. by J. M. Chalmers and P. R. Griffiths (Wiley, New York, 2002), pp. 759–774.

    Google Scholar 

  20. M. Kerker, D. S. Wang, and H. Chew, Appl. Opt. 19, 4159–4174 (1980).

    Article  CAS  Google Scholar 

  21. J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, Ch. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, Faraday Discuss. 132, 9–26 (2006).

    Article  CAS  Google Scholar 

  22. M. Moskovits, Rev. Mod. Phys. 57, 783–828 (1985).

    Article  CAS  Google Scholar 

  23. M. J. Natan, Faraday Discuss. 132, 321–328 (2006).

    Article  CAS  Google Scholar 

  24. A. Otto, J. Raman Spectrosc. 37, 937–947 (2006).

    Article  CAS  Google Scholar 

  25. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, J. Phys. Chem. C 111, 13794–13803 (2007).

    Article  Google Scholar 

  26. L. Tong, T. Zhu, and Z. Liu, Chem. Soc. Rev. 40, 1296–1304 (2011).

    Article  CAS  Google Scholar 

  27. X.-M. Lin, Y. Cui, Y.-H. Xu, B. Ren, Z.-Q. Tian, Anal. Bioanal. Chem. 394, 1729–1745 (2009).

    Article  CAS  Google Scholar 

  28. N. G. Khlebtsov and L. A. Dykman, J. Quant. Spectr. Radiat. Transfer 111, 1–35 (2010).

    Article  CAS  Google Scholar 

  29. H. Ko, S. Singamaneni, and V. V. Tsukruk, Small 4, 1576–1599 (2008).

    Article  CAS  Google Scholar 

  30. X. Qian, X. Zhou, and Sh. Nie, J. Am. Chem. Soc. 130, 14934–14935 (2008).

    Article  Google Scholar 

  31. J. Kneipp, H. Kneipp, W. L. Rice, and K. Kneipp, Anal. Chem. 77, 2381–2385 (2005).

    Article  CAS  Google Scholar 

  32. Ch. D. Keating, K. M. Kovaleski, and M. J. Natan, J. Phys. Chem. B 102, 9404–9413 (1998).

    Article  CAS  Google Scholar 

  33. C. S. Seney, B. M. Gutzman, and R. H. Goddard, J. Phys. Chem. C 113, 74–80 (2009).

    Article  CAS  Google Scholar 

  34. R. A. Puebla and R. F. Aroca, Anal. Chem. 81, 2280–2285 (2009).

    Article  Google Scholar 

  35. J. Zheng, Y. Ding, B. Tian, Zh. L. Wang, and X. Zhuang, J. Am. Chem. Soc. 130, 10472–10473 (2008).

    Article  CAS  Google Scholar 

  36. J. M. McLellan, Z.-Y. Li, A. R. Siekkinen, and Y. Xia, Nano Lett. 7, 1013–1017 (2007).

    Article  CAS  Google Scholar 

  37. M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Zh.-Y. Li, Y. Xia, J. Phys. Chem. A 113, 3932–3939 (2009).

    Article  CAS  Google Scholar 

  38. R. A. Puebla, D. J. Ross, G.-A. Nazri, and R. F. Aroca, Langmuir 21, 10504–10508 (2005).

    Article  Google Scholar 

  39. C. S. Levin, J. Kundu, B. G. Janesko, G. E. Scuseria, R. M. Raphael, and N. J. Halas, J. Phys. Chem. B 112, 14168–14175 (2008).

    Article  CAS  Google Scholar 

  40. J. Chen, J. M. McLellan, A. Siekkinen, X. Yu, Zh.-Y. Li, and Y. Xia, J. Am. Chem. Soc. 128, 14776–14777 (2006).

    Article  CAS  Google Scholar 

  41. A. M. Schwartzberg and J. Z. Zhang, J. Phys. Chem. C 112, 10323–10337 (2008).

    Article  CAS  Google Scholar 

  42. A. M. Schwartzberg, Ch. D. Grant, A. Wolcott, Ch. E. Talley, T. R. Huser, R. Bogomolni, and J. Z. Zhang, J. Phys. Chem. B 108, 19191–19197 (2004).

    Article  CAS  Google Scholar 

  43. H. Wang, J. Kundu, and N. J. Halas, Angew. Chem. Int. Ed. 46, 9040–9044 (2007).

    Article  CAS  Google Scholar 

  44. Zh. Sun, Y. Li, Y. Wang, X. Chen, J. Zhang, K. Zhang, Z. Wang, Ch. Bao, J. Zeng, B. Zhao, and B. Yang, Langmuir 23, 10725–10731 (2007).

    Article  CAS  Google Scholar 

  45. R. Puebla, B. Cui, J.-P. Bravo-Vasquez, T. Veres, and H. Fenniri, J. Phys. Chem. 111, 6720–6723 (2007).

    Google Scholar 

  46. J. P. Camden, J. A. Dieringer, J. Zhao, and R. P. Van Duyne, Acc. Chem. Res. 41, 1653–1661 (2008).

    Article  CAS  Google Scholar 

  47. N. Felidj, S. Lau Truong, J. Aubard, and G. Levi, J. Chem. Phys. 120, 7141–7146 (2004).

    Article  CAS  Google Scholar 

  48. M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. C. 116, 478–483 (2011). doi 10.1021/jp209982h

    Article  Google Scholar 

  49. A. V. Alekseeva, V. A. Bogatyrev, and B. N. Khlebtsov, A. G. Mel’nikov, L. A. Dykman, and N. G. Khlebtsov, Colloid J. 68, 661–678 (2006).

    Article  CAS  Google Scholar 

  50. Y.-P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, J. Phys. Chem. B 110, 3153–3157 (2006).

    Article  CAS  Google Scholar 

  51. B. Nikoobakht and M. A El-Sayed, Chem. Mater. 15, 1957–1962 (2003).

    Article  CAS  Google Scholar 

  52. J. Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, Coord. Chem. Rev. 249, 1870–1879 (2005).

    Article  Google Scholar 

  53. X. Hu, W. Cheng, T. Wang, Y. Wang, E. Wang, and S. Dong, J. Phys. Chem. B 109, 19385–19389 (2005).

    Article  CAS  Google Scholar 

  54. S. Yun, M. K. Oh, S. K. Kim, and S. Park, Anal. Chem. 79, 8584–8589 (2007).

    Article  CAS  Google Scholar 

  55. Y. Wang, Sh. Guo, H. Chen, and E. Wang, J. Colloid Interface Sci. 318, 82–87 (2008).

    Article  CAS  Google Scholar 

  56. R. A. Puebla, A. Agarwal, P. Manna, B. P. Khanal, P. Aldeanueva-Potel, E. Carbo-Argibay, N. Pazos- Perez, L. Vigderman, E. R. Zubarev, N. Kotov, and L. M. Liz-Marzan, Proc. Natl. Acad. Sci. U. S. A. 108, 8157–8161 (2011).

    Article  Google Scholar 

  57. M. Yu. Tsvetkov, V. N. Bagratashvili, V. Ya. Panchenko, A. O. Rybaltovskii, M. I. Samoilovich, and M. A. Timofeev, Ross. Nanotekhnol. 6(9–10), 51–55 (2011).

    Google Scholar 

  58. B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, Phys. Chem. Chem. Phys. 12, 3210–3218 (2010).

    Article  CAS  Google Scholar 

  59. F. Ratto, P. Matteini, F. Rossi, and R. Pini, J. Nanopart. Res. 12, 2029–2036 (2010).

    Article  CAS  Google Scholar 

  60. B. Khlebtsov, V. Khanadeev, T. Pylaev, and N. Khlebtsov, J. Phys. Chem. C 115, 6317–6323.

  61. S. Malynych, I. Luzinov, and G. Chumanov, J. Phys. Chem. B 106, 1280–1285 (2002).

    Article  CAS  Google Scholar 

  62. S. Malynych and G. Chumanov, J. Am. Chem. Soc. 125, 2896–2898 (2003).

    Article  CAS  Google Scholar 

  63. F. Tam, C. Moran, and N. Halas, J. Phys. Chem. B 108, 17290–17294 (2004).

    Article  CAS  Google Scholar 

  64. K. Liu, N. Zhao, and E. Kumacheva, Chem. Soc. Rev. 40, 656–671 (2010).

    Article  Google Scholar 

  65. Z.-C. Xu, Ch.-M. Shen, C.-O. Xia, T.-Zh. Yang, Sh.-T. Chen, H.-L. Li, and H.-J. Gao, Chem. Phys. Lett. 432, 222–225 (2006).

    Article  CAS  Google Scholar 

  66. A. Guerrero-Martinez, E. Carbo-Argibay, J. Perez- Juste, G. Tardajos, and L. M. Liz-Marzan, Angew. Chem., Int. Ed. Engl. 48, 9484–9488 (2009).

    Article  CAS  Google Scholar 

  67. M. I. Stockman, Opt. Express 19, 22029–22106 (2011).

    Article  Google Scholar 

  68. B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, Phys. Rev. B: Condens. Matter Mater. Phys. 77, 035440 (2008).

    Article  Google Scholar 

  69. P. K. Jain and M. A. El-Sayed, Chem. Phys. Lett. 487, 153–164 (2010).

    Article  CAS  Google Scholar 

  70. N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, and L. A. Dykman, in Photopolarimetry in Remote Sensing, Ed. by G. Videen, Ya. S. Yatskiv, and M. I. Mishchenko (Kluwer, Dordrecht, 2004), pp. 265–308.

    Google Scholar 

  71. B. N. Khlebtsov, V. P. Zharov, A. G. Melnikov, V. V. Tuchin, and N. G. Khlebtsov, Nanotecnology 17, 5167–5179 (2006).

    Article  CAS  Google Scholar 

  72. A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, and J. Z. Zhang, J. Phys. Chem. B 108, 19191 (2004).

    Article  CAS  Google Scholar 

  73. W.-H. Hsiao, H.-Y. Chen, Y.-C. Yang, Y. Chen, Ch.-Y. Lee, and H.-T. Chiu, ACS Appl. Mater. Interfaces 3, 3280–3284 (2011).

    Article  CAS  Google Scholar 

  74. D. A. Genov, A. K. Sarychev, and V. M. Shalaev, Nano Lett. 4, 1535–1539 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Khlebtsov.

Additional information

Original Russian Text © B.N. Khlebtsov, V.A. Khanadeev, E.V. Panfilova, S.A. Minaeva, M.Yu. Tsvetkov, V.N. Bagratashvili, N.G. Khlebtsov, 2012, published in Rossiiskie Nanotekhnologii, 2012, Vol. 7, Nos. 7–8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khlebtsov, B.N., Khanadeev, V.A., Panfilova, E.V. et al. Surface-enhanced raman scattering platforms on the basis of assembled gold nanorods. Nanotechnol Russia 7, 359–369 (2012). https://doi.org/10.1134/S1995078012040064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078012040064

Keywords

Navigation