Skip to main content
Log in

Final polishing of metals to obtain nanoroughened surface

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The concept of the final polishing of hardened steels and nonferrous metals using nanodispersed tribochemically active abrasives based on solid solutions of aluminum and iron oxides is set out in terms of mechanical chemistry. It is demonstrated that the polishing velocity and quality of metals are determined by the formation of an oxide film on their surface and its removal. In order to describe polishing kinetics, the equations for heterogeneous processes are applied. It is shown that the application of these abrasive materials reduces the number of finishing operations with the achievement of a surface roughness no higher than R a 0.005 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Artemov, “Polishing Nanodiamonds,” Solid State Phys. 46, 687 (2004).

    Article  CAS  Google Scholar 

  2. M. J. Jackson, B. Mills, and M. P. Hitchiner, “Controlled Wear of Vitrified Abrasive Materials for Precision Grinding Applications.” Sadhana 28, 897 (2003).

    Article  CAS  Google Scholar 

  3. V. P. Bakharev, “Dispersion of Ceramics and Composites in Diamond Finishing by Free Abrasive,” Russ. Eng. Res. 29, 162–168 (2009).

    Article  Google Scholar 

  4. Yu. D. Filatov, “Assessment of Surface Roughness and Reflectance of Nonmetallic. Products upon Diamond Abrasive Finishing,” Sverkhtverd. Mater., No. 5, 70–81 (2009).

  5. P. A. Storozhenko, Sh. L. Guseinov, and S. I. Malashin, “Nanodispersed Powders: Synthesis Methods and Practical Applications,” Nanotechnol. Russia 4, 262 (2009).

    Article  Google Scholar 

  6. V. V. Pokropivnyi and P. M. Silenko, “Silicon Carbide Nanotubes and Nanotubular Fibers: Synthesis, Stability, Structure and Classification,” Theor. Exp. Chem. 42, 3–15 (2006).

    Article  CAS  Google Scholar 

  7. A. K. Khanra, “Production of Boron Carbide Powder by Carbothermal Synthesis of Gel Material,” Bull. Mater. Sci. 30, 93–96 (2007).

    Article  CAS  Google Scholar 

  8. S. P. Bogdanov, “Influence of Superstoichiometric Boron on the Synthesis of Cubic Boron Nitride,” Glass Phys. Chem. 34, 336–339 (2008).

    Article  CAS  Google Scholar 

  9. E. V. Degtyareva, I. I. Kabakova, E. B. Skorodumova, and V. E. Armyanovskii, “An Abrasive-Resistant Corundum Ceramic for Drawing Microwires,” Refract. Industr. Ceram. 23, 82–87 (1982).

    Google Scholar 

  10. Xiao-lan Song, Peng Qu, Hai-pin Yang, Xi He, and Guan-zhou Qiu, “Synthesis of Γ-Al2O3 Nanoparticles by Chemical Precipitation Method,” J. Cent. South Univ. Technol. 12, 536–541 (2005).

    Article  CAS  Google Scholar 

  11. Yu. A. Kotov and O. M. Samatov, “Characteristics of Aluminum Oxide Powders Produced by Pulsed Heating of a Wire,” Poverkhnost’, No. 10–14, 90–94 (1994).

  12. A. P. Safronov, E. G. Kalinina, D. A. Blagodetelev, and Yu. A. Kotov, “Separation of Aluminum Oxide Powders with Different Degrees of Aggregation by Sedimentation in an Aqueous Medium,” Nanotechnol. Russia 5, 498 (2010).

    Article  Google Scholar 

  13. V. M. Belousov, V. M. Chertov, E. V. Rozhkova, V. I. Litvin, and V. A. Zazhigalov, “A Sol-Gel Method for Synthesizing Porous Iron-Aluminum Oxide Sub-stances and Regulation of their Physicochemical Characteristics,” Teor. Eksp. Khim. 33, 120–123 (1997).

    Google Scholar 

  14. L. Silyakov, N. S. Pesotskaya, and V. I. Yukhvid, “Self-propagated High-Temperature Synthesis and Properties of Corundum-Based Abrasive Composition Material,” Neorg. Mater. 31, 351–357 (1995).

    Google Scholar 

  15. A. G. Tarasov, V. A. Gorshkov, and V. I. Yukhvid, “Phase Composition and Microstructure of Al2O3-Cr2O3 Solid Solutions Prepared by Self-Propagating High-Temperature Synthesis,” Inorg. Mater. 43, 724 (2007).

    Article  CAS  Google Scholar 

  16. A. G. Merzhanov, I. P. Borovinskaya, V. K. Prokudina, N. S. Pesotskaya, and M. A. Nasonova, “SHS-Abrasives: Production, Properties, Application,” Nauka Proizvodstvu, No. 8, 4–12 (1998).

  17. V. V. Victorov, L. N. Kovalev, and B. P. Virachev, “Fine Structure of α-Al2O3 Based Solid Solutions,” Inorg. Mater. 37, 983 (2001).

    Article  Google Scholar 

  18. Xiao-lan Song, Peng Qu, Hai-pin Yang, Xi He, and Guan-zhou Qiu, “Synthesis of Γ-Al2O3 Nanoparticles by Chemical Precipitation Method,” J. Cent. South Univ. Technol. 12, 536–541 (2005).

    Article  CAS  Google Scholar 

  19. Nam-Hoon Kimi, Jong-Heun Lim, Sang-Yong Kim, and Eui-Goo Chang, “Semi-Abrasive Free Slurry with Acid Colloidal Silica for Copper Chemical Mechanical Planarization,” J. Mater. Sci.: Mater. Electron. 16, 629–632 (2005).

    Article  Google Scholar 

  20. A. P. Garshin, V. M. Gropyanov, and Yu. V. Lagunov, Abrasive Materials (Mashinostroenie, Leningrad, 1983) [in Rusian].

    Google Scholar 

  21. V. V. Viktorov, A. A. Fotiev, and V. D. Badich, “Abrasive and Thermal Properties of Al2O3-Cr2O3 Solid Solutions,” Inorg. Mater. 32, 55 (1996).

    CAS  Google Scholar 

  22. L. F. Chekhomova, “Abrasive Properties of Modified Chromia,” Inorg. Mater. 37, 274 (2001).

    Article  CAS  Google Scholar 

  23. L. F. Koroleva, Modified Oxides, Oxohydroxide, Chromium Spinels for Abrasive and Pigmentary Materials (UrO RAN, Yekaterinburg, 2002) [in Russian].

    Google Scholar 

  24. L. F. Koroleva, “Abrasive Properties of Aluminum Iron Oxide Nanoparticles,” Inorg. Mater. 45, 1158 (2009).

    Article  CAS  Google Scholar 

  25. P. N. Orlov, Technological Ensuring of the Quality of Parts by Finishing Techniques (Mashinostroenie, Moscow, 1988) [in Russian].

    Google Scholar 

  26. P. I. Yashcheritsyn and A. N. Martynov, Finishing of Details in Engineering (Vysh. shkola, Minsk, 1983) [in Russian].

    Google Scholar 

  27. L. F. Koroleva, “Tribochemical Activity of Mixed Oxides Abrasive Materials in a Metal Polishing,” Fiz. Khim. Obrab. Mater., No. 4, 84–92 (2006).

  28. L. F. Koroleva, “Synthesis and Abrasive Properties of Nanoparticulate MoO2-Modified Al2−xFexO3 and Fe2−yAlyO3 Solid Solutions,” Inorg. Mater. 46, 1330 (2010).

    Article  CAS  Google Scholar 

  29. V. V. Rogov, N. D. Rublev, T. L. Krotenko, and A. V. Troyan, “A Study of Intensity of Tribochemical Contact Interaction between a Polishing Compound and Sapphire in Machining,” Sverkhtverd. Mater., No. 4, 75–78 (2008).

  30. B. I. Kostetskii, I. G. Nosovskii, A. K. Karaulov, et al., Surface Strength of Materials in Friction (Tekhnika, Kiev, 1976) [in Russian].

    Google Scholar 

  31. E. A. Marchenko, On the Nature of Fracture of Metal Surface in Friction (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  32. B. A. Migachev, Identification of Damage at Metal Deformation (UrO RAN, Yekaterinburg, 2001) [in Russian].

    Google Scholar 

  33. Y.-Y. Lin and S.-P. Lo, “A Study of a Finite Element Model for the Chemical Mechanical Polishing Process,” Int. J. Adv. Manuf. Technol. 23, 644–650 (2004).

    Article  Google Scholar 

  34. Y. G. Wang, Y. W. Zhao, and X. Li, “Modelung the Effects of Abrasive Size, Surface Oxidizer Concentration and Binding Energy on Chemical Mechanical Polishing at Molecular Scale,” Tribol. Int. 41, 202–210 (2008).

    Article  CAS  Google Scholar 

  35. E. E. Bibik, “Mechanochemistry of Metal Polishing with an Abrasive Suspension,” Russ. J. Appl. Chem. 83, 811–815 (2010).

    Article  CAS  Google Scholar 

  36. Ping Liu, Xinchun Lu, Yuhong Liu, Jianbin Luo, and Guoshun Pan, “Chemical Mechanical Planarization of Copper Using Ethylenediamine and Hydrogen Peroxide Based Slurry,” Adv. Tribol., Pt. 3 1, 908–911 (2010).

    Google Scholar 

  37. V. G. Myagkov, L. E. Bykova, L. A. Li, et al., “Solid Phase Reactions, Self Propagating High Temperature Synthesis, and Martensitic Transformations in Thin Films,” Dokl. Phys. 47, 95 (2002).

    Article  CAS  Google Scholar 

  38. V. V. Boldyrev, Reaction Ability of Solids (Sib. Branch RAN, Novosibirsk, 1997) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Koroleva.

Additional information

Original Russian Text © L.F. Koroleva, 2012, published in Rossiiskie Nanotekhnologii, 2012, Vol. 7, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koroleva, L.F. Final polishing of metals to obtain nanoroughened surface. Nanotechnol Russia 7, 67–75 (2012). https://doi.org/10.1134/S1995078012010119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078012010119

Keywords

Navigation