Skip to main content
Log in

Silver nanocubes and gold nanocages: Fabrication and optical and photothermal properties

  • Articles
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The paper presents experimental data on fabrication, optical, and photothermal properties of silver nanocubes and gold-silver nanostructures based on silver cube templates. The silver cubes were obtained using polyol synthesis with a sulfide-mediated reduction of silver nitrate by ethylene glycol in the presence of poly(vinyl pyrrolidone). A galvanic replacement method was used to fabricate gold-silver nanoparticles of various structures, starting from silver-gold alloy particles and ending by target gold nanocages. The gold nanocages formation was controlled by shifts of the extinction and differential light scattering plasmon resonances, the transmission and scanning electron microscopy, the electronic-spectroscopy analysis (ESI), the dark-field microscope light scattering, and by visual inspection of colloid colors. The comparative experimental data on the laser heating kinetics are presented for three particle types: gold nanorods, silica/gold nanoshells, and gold nanocages. For suspensions with equal optical density at the laser heating wavelength (near plasmon resonances at 800 nm), all three particle types revealed close photothermal parameters. However, the specific photothermal efficiency per metal particle mass was maximal for gold nanocages followed by gold nanorods and silica/gold nanoshells. A coupled dipole spheres method was used to calculate the extinction and absorption spectra of randomly oriented particles by an analytical solution for random orientation averaging. The nanoparticles were modeled by arrays of interacting spheres with small intersection and polarizability calculated through the first Mie coefficient. The measured and calculated extinction spectra of silver cubes and gold nanocages are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-Y. Shim, D.-K. Lim, and J.-M. Nam, Nanomedicine 3, 215 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. S. Lal, S. E. Clare, and N. J. Halas, Acc. Chem. Res. 41, 1842 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. L. A. Dykman, V. A. Bogatyrev, S. Yu. Shchegolev, and N. G. Khlebtsov, Gold Nanoparticles: Synthesis, Properties, and Biomedical Applications (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  4. M. E. Stewart, C. R. Anderson, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and B. N. Khlebtsov, Ross. Nanotekhnol. 2, 69 (2007).

    Google Scholar 

  6. N. G. Khlebtsov and L. A. Dykman, J. Quant. Spectrosc. Radiat. Transfer 111, 1 (2010).

    Article  CAS  ADS  Google Scholar 

  7. J. Zeng, Q. Zhang, J. Chen, and Y. Xia, Nano Lett. 10, 30 (2010).

    Article  CAS  ADS  PubMed  Google Scholar 

  8. L. M. Liz-Marzán, Langmuir 22, 32 (2006).

    Article  PubMed  Google Scholar 

  9. N. G. Khlebtsov, Kvantovaya Elektron. (Moscow) 38(6), 504 (2008).

    Article  CAS  Google Scholar 

  10. B. N. Khlebtsov, V. P. Zharov, A. G. Melnikov, V. V. Tuchin, and N. G. Khlebtsov, Nanotechnology 17, 5167 (2006).

    Article  CAS  ADS  Google Scholar 

  11. B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, Langmuir 24, 14 166 (2008).

    Article  CAS  Google Scholar 

  12. J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, Coord. Chem. Rev. 249, 1870 (2005).

    Article  Google Scholar 

  13. G. von Maltzahn, J.-H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, Cancer Res. 69, 3892–3900 (2009).

    Article  Google Scholar 

  14. Y. Sun and Y. Xia, Science (Washington) 298, 2176 (2002).

    Article  CAS  ADS  Google Scholar 

  15. Y. Sun, B. T. Mayers, and Y. Xia, Nano Lett. 2, 481 (2002).

    Article  CAS  ADS  Google Scholar 

  16. D. Yu and V. W.-W. Yam, J. Am. Chem. Soc. 126, 13 200 (2004).

    CAS  Google Scholar 

  17. D. Yu and V. W.-W. Yam, J. Phys. Chem. B 109, 5497 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Y. Sun and Y. Xia, J. Am. Chem. Soc. 126, 3892 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. J. Chen, J. M. McLellan, A. Siekkinen, Y. Xiong, Z.-Y. Li, and Y. Xia, J. Am. Chem. Soc. 128, 14 776 (2006).

    CAS  Google Scholar 

  20. A. R. Siekkinen, J. M. McLellan, J. Chen, and Y. Xia, Chem. Phys. Lett. 432, 491 (2006).

    Article  CAS  ADS  PubMed  Google Scholar 

  21. X. Lu, L. Au, J. McLellan, Z.-Y. Li, M. Marquez, and Y. Xia, Nano Lett. 7, 1764 (2007).

    Article  CAS  ADS  PubMed  Google Scholar 

  22. X. Lu, H.-Y. Tuan, J. Chen, Z.-Y. Li, B. A. Korgel, and Y. Xia, J. Am. Chem. Soc. 129, 1733 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. S. E. Skrabalak, L. Au, X. Li, and Y. Xia, Nat. Protoc. 2, 2182 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Q. Zhang, C. Cobley, L. Au, M. McKierman, A. Schwartz, L.-P. Wen, J. Chen, and Y. Xia, Appl. Mater. Interfaces 1, 2044 (2009).

    Article  CAS  Google Scholar 

  25. M. Hu, J. Chen, M. Marquez, Y. Xia, and G. V. Hartland, J. Phys. Chem. C 111, 12 558 (2007).

    CAS  Google Scholar 

  26. E. C. Cho, C. Kim, F. Zhou, C. M. Cobley, K. H. Song, J. Chen, Z.-Y. Li, L. V. Wang, and Y. Xia, J. Phys. Chem. C 113, 9023 (2009).

    Article  CAS  Google Scholar 

  27. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, Nano Lett. 5, 473 (2005).

    Article  CAS  ADS  PubMed  Google Scholar 

  28. H. Petrova, C.-H. Lin, M. Hu, J. Chen, A. R. Siekkinen, Y. Xia, J. E. Sader, and G. V. Hartland, Nano Lett. 7, 1059 (2007).

    Article  CAS  ADS  PubMed  Google Scholar 

  29. M. Hu, H. Petrova, J. Chen, J. M. McLellan, A. R. Siekkinen, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, J. Phys. Chem. B 110, 1520 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, Sh. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, J. Mater. Chem. 18, 1949 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. H. Cang, T. Sun, Z.-Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, Opt. Lett. 30, 3048 (2005).

    Article  CAS  ADS  PubMed  Google Scholar 

  32. X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang, Nano Lett. 7, 3798 (2007).

    Article  CAS  ADS  PubMed  Google Scholar 

  33. K. H. Song, C. Kim, C. M. Cobley, Y. Xia, and L. V. Wang, Nano Lett. 9, 183 (2009).

    Article  CAS  ADS  PubMed  Google Scholar 

  34. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, Nano Lett. 7, 1318 (2007).

    Article  CAS  ADS  PubMed  Google Scholar 

  35. S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, Nanomedicine 2, 657 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, Adv. Mater. (Weinheim) 19, 3177 (2007).

    Article  CAS  Google Scholar 

  37. L. Au, D. Zheng, F. Zhou, Z.-Y. Li, X. Li, and Y. Xia, ACS Nano 2, 1645 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. C. W. Yen, M. A. Mahmoud, and M. A. El-Sayed, J. Phys. Chem. A 113, 4340 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. C. M. Cobley, D. J. Campbell, and Y. Xia, Adv. Mater. (Weinheim) 20, 748 (2008).

    Article  CAS  Google Scholar 

  40. M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, Nat. Mater. 8, 935 (2009).

    Article  CAS  ADS  PubMed  Google Scholar 

  41. Y. Yang, Sh. Matsubara, L. Xiong, T. Nayakawa, and M. Nogami, J. Phys. Chem. C 111, 9095 (2007).

    Article  CAS  Google Scholar 

  42. M. A. Mahmoud, C. E. Tabor, and M. A. El-Sayed, J. Phys. Chem. C 113, 5493 (2009).

    Article  CAS  Google Scholar 

  43. S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, Acc. Chem. Res. 41, 1587 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marqueze, and Y. Xia, Chem. Soc. Rev. 35, 1084 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, J. Phys. Chem. C 113, 12 090 (2009).

    Article  CAS  Google Scholar 

  46. B. T. Draine, in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, Ed. by M. I. Mishchenko, J. W. Hovenier, and L. D. Travis (Academic, San Diego, California, United States, 2000), pp. 131–145.

    Google Scholar 

  47. V. A. Markel, V. M. Shalaev, M. I. Stokman, and T. F. George, Phys. Rev. B: Condens. Matter 53, 2425 (1996).

    CAS  ADS  Google Scholar 

  48. N. G. Khlebtsov, in Light Scattering by Nonspherical Particles: Halifax Contributions, Ed. by G. Videen, Q. Fu, and P. Chylek (Army Research Laboratory, Adelphi, Maryland, United States, 2000), pp. 123–126.

    Google Scholar 

  49. N. G. Khlebtsov, Opt. Spektrosk. 90(3), 468 (2001) [Opt. Spectrosc. 90 (3), 408 (2001)].

    Article  Google Scholar 

  50. B. N. Khlebtsov, V. A. Khanadeev, V. A. Bogatyrev, L. A. Dykman, and N. G. Khlebtsov, Ross. Nanotekhnol. 3(7–8), 50 (2008) [Nanotechnol. Russ. 3 (7–8), 442 (2008)].

    Google Scholar 

  51. B. N. Khlebtsov, V. A. Khanadeev, V. A. Bogatyrev, L. A. Dykman, and N. G. Khlebtsov, Ross. Nanotekhnol. 4(7–8), 93 (2009) [Nanotechnol. Russ. 4 (7–8), 453 (2009)].

    Google Scholar 

  52. H. Liao and J. H. Hafner, Chem. Mater. 17, 4636 (2005).

    Article  CAS  Google Scholar 

  53. G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, J. Biomed. Opt. 14, 021 016 (2009).

    Article  Google Scholar 

  54. V. Sharma, K. Parka, and M. Srinivasaraoa, Proc. Natl. Acad. Sci. USA 106, 4981 (2009).

    Article  CAS  ADS  PubMed  Google Scholar 

  55. C. J. Noguez, J. Phys. Chem. C 111, 3806 (2007).

    Article  CAS  Google Scholar 

  56. J. Ye, C. Chen, W. van Roy, P. van Dorpe, G. Maes, and G. Borghs, Nanotecnology 19, 325 702 (2008).

    Google Scholar 

  57. Y. Sun and Y. Xia, Nano Lett. 3, 1569 (2003).

    Article  CAS  ADS  Google Scholar 

  58. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  59. N. G. Khlebtsov, A. G. Melnikov, L. A. Dykman, and V. A. Bogatyrev, in Photopolarimetry in Remote Sensing, Ed. by G. Videen, Y. Yatskiv, and M. I. Mishchenko (Kluwer, Dordrecht, The Netherlands, 2004), pp. 265–308.

    Google Scholar 

  60. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Khlebtsov.

Additional information

Original Russian Text © B.N. Khlebtsov, V.A. Khanadeev, I.L. Maksimova, G.S. Terentyuk, N.G. Khlebtsov, 2010, published in Rossiiskie nanotekhnologii, 2010, Vol. 5, Nos. 7–8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khlebtsov, B.N., Khanadeev, V.A., Maksimova, I.L. et al. Silver nanocubes and gold nanocages: Fabrication and optical and photothermal properties. Nanotechnol Russia 5, 454–468 (2010). https://doi.org/10.1134/S1995078010070050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078010070050

Keywords

Navigation