Skip to main content
Log in

Using nanosized, homogeneous, and heterogeneous catalytic systems in organic synthesis: changing the structure of active center in chemical reactions in solution

  • Reviews
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

This review considers the interrelation between homogeneous, heterogeneous, and nanosized catalytic systems for carrying out reactions in liquid phase (organic solvents, water, ionic liquids, and melts). Most attention is drawn to describing the process of atoms leaching from the surface of nanoparticles and its influence on the activity and selectivity of the catalysts. Well-known reactions of cross-coupling, the data for which have been obtained using all types of catalytic samples, are taken as an example. The area where cross-coupling reactions in fine organic synthesis can be applied includes pharmaceutical chemistry and medical applications of organic chemistry, the production of Pharmaceuticals and biologically active compounds, the chemistry of dyes and organic functional materials, and a number of industrially important processes. The implementation of highly effective nanosized catalysts in this area is expected to provide conceptual changes which can solve many important problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Buchachenko, “Nanochemistry: A Direct Route to High Technologies of the New Century,” Usp. Khim. 72, 419–437 (2003).

    Google Scholar 

  2. M. D. Cobb and J. Macoubrie, “Public Perceptions about Nanotechnology: Risks, Benefits, and Trust,” J. Nanopart. Res. 6, 395–405 (2004).

    Article  Google Scholar 

  3. Nanotechnology Research Directions: Vision for Nanotechnology in the Next Decade, Ed. by M. C. Roco, R. S. Williams, and P. Alivisatos (Kluwer, Dordrecht, The Netherlands, 2000; Mir, Moscow, 2002).

    Google Scholar 

  4. G. B. Sergeev, Nanochemistry (Elsevier, Amsterdam, 2006; Moscow State University, Moscow, 2007).

    Google Scholar 

  5. A. I. Gusev and A. A. Rempel, Nanocrystalline Materials (Cambridge International Science Publishing, Cambridge, 2004).

    Google Scholar 

  6. V. N. Parmon, “Thermodynamic Analysis of the Effect of the Nanoparticle Size of the Active Component on the Adsorption Equilibrium and the Rate of Heterogeneous Catalytic Processes,” Dokl. Akad. Nauk 413(sn1), 53–59 (2007) [Dokl. Phys. Chem. 413 (1), 42–48 (2007)].

    Google Scholar 

  7. T. N. Rostovshchikova, V. V Smirnov, V. M. Kozhevin, D. A. Yavsin, and S. A. Gurevich, “Intercluster Interactions in Catalysis with Nanometer-Sized Metal Particles,” Ross. Nanotekhnol. 2(1–2), 47–60 (2007).

    Google Scholar 

  8. A. Yu. Stakheev and L. M. Kustov, “Effects of the Support on the Morphology and Electronic Properties of Supported Metal Clusters: Modern Concepts and Progress in 1990s,” Appl. Catal. 188, 3–35 (1999).

    Article  CAS  Google Scholar 

  9. A. Yu. Stakheev, Yu. M. Shulga, N. A. Gaidai, N. S. Telegina, L. M. Kustov, and K. M. Minachev, “New Evidence for the Electronic Nature of the Strong Metal-Supported Interaction Effect over a Pt/TiO2 Hydrogenation Catalyst,” Mendeleev Commun. 11, 186–188(2001).

    Article  Google Scholar 

  10. A. S. Lisitsyn, V. N. Parmon, V. K. Duplyakin, and V. A. Likholobov, “Modern Problems and Prospects for the Development of Investigations in the Field of Preparation of Deposited Palladium Catalysts,” Ross. Khim. Zh. 50(4), 140–153 (2006).

    Google Scholar 

  11. I. I. Moiseev and M. N. Vargaftik, “Clusters and Colloidal Metals in Catalysis,” Zh. Obshch. Khim. 72(4), 550–560 (2002) [Russ. J. Gen. Chem. 72 (4), 512–523 (2002)].

    Google Scholar 

  12. V. I. Bukhtiyarov and M. G. Slin’ko, “Metallic Nanosystems in Catalysis,” Usp. Khim. 70, 167–181 (2001).

    Google Scholar 

  13. S. A. Nikolaev, V. V. Smirnov, I. P. Beletskaya, A. Yu. Vasil’kov, A. V. Naumkin, and F. A. Tyurina, “Synergism of the Catalytic Action of Au—Ni Nanocomposites in the Course of Allyl Isomerization of Allylbenzene,” Ross. Nanotekhnol. 2(9–10), 58–67 (2007).

    Google Scholar 

  14. A. Solinas and M. Taddei, “Solid-Supported Reagents and Catch-and-Release Techniques in Organic Synthesis,” Synthesis, No. 16, 2409–2453 (2007).

    Google Scholar 

  15. Metal-Catalyzed Cross-Coupling Reactions, Ed. by A. de Meijere and F. Diederich (Wiley, Berlin, 2004).

    Google Scholar 

  16. Catalytic Heterofunctionalization, Ed. by A. Togni and H. Grützmacher (Wiley, Weinheim, 2001).

    Google Scholar 

  17. Applied Homogeneous Catalysis with Organometallic Compounds, Ed. by B. Cornils and W. A. Herrmann, 2nd ed. (Wiley, Weinheim, 2002).

    Google Scholar 

  18. A. R Tao, S. Habas, and P. D. Yang, “Shape Control of Colloidal Metal Nanocrystals,” Small 4, 310–325 (2008).

    Article  CAS  Google Scholar 

  19. A. Roucoux, J. Schulz, and H. Patin, “Reduced Transition-Metal Colloids: A Novel Family of Reusable Catalysts?” Chem. Rev. 102, 3757–3778 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. B. F. Cushing, V. F. Kolesnichenko, and C. J. O’Connor, “Recent Advances in the Fiquid-Phase Syntheses of Inorganic Nanoparticles,” Chem. Rev. 104, 3893–3946 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. H. Bönnemann and R. M. Richards, “Nanoscopic Metal Particles-Synthetic Methods and Potential Applications,” Eur. J. Inorg. Chem. 2455–2480 (2001).

  22. J. P. Wilcoxon and B. F. Abrams, “Synthesis, Structure, and Properties of Metal Nanoclusters,” Chem. Soc. Rev. 35, 1162–1194 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Handbook of Heterogeneous Catalysis, Ed. by G. Ertl, G. Ertl, H. Knözinger, F. Schüth, and J. Weitkamp, 2nd ed. (Wiley Weinheim, Germany, 2008).

    Google Scholar 

  24. F. D. Pachon and G. Rothenberg, “Transition-Metal Nanoparticles: Synthesis, Stability, and the Feaching Issue,” Appl. Organomet. Chem. 22, 288–299 (2008).

    Article  Google Scholar 

  25. N. Miyaura and A. Suzuki, “Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds,” Chem. Rev. 95, 2457–2483 (1995).

    Article  CAS  Google Scholar 

  26. N. Miyaura, “Cross-Coupling Reaction of Organoboron Compounds via Base-Assisted Transmetalation to Palladium(II) Complexes,” J. Organomet. Chem. 653, 54–57 (2002).

    Article  CAS  Google Scholar 

  27. I. P. Beletskaya and A. V. Cheprakov, “Metal Complexes as Catalysts for C—C Cross-Coupling Reactions,” in Comprehensive Coordination Chemistry II: From Biology to Nanotechnology, Ed. by J. A. McCleverty and T. J. Meyer (Elsevier, Oxford, 2004), Vol. 9, pp. 305–368.

    Google Scholar 

  28. N. T. S. Phan, M. V. D. Sluys, and C. W. Jones, “On the Nature of the Active Species in Palladium Catalyzed Mizoroki—Heck and Suzuki—Miyaura Couplings—Homogeneous or Heterogeneous Catalysis: A Critical Review,” Adv. Synth. Catal. 348, 609–679 (2006).

    Article  CAS  Google Scholar 

  29. V. P. Ananikov, D. G. Musaev, and K. Morokuma, “Theoretical Insight into the C—C Coupling Reactions of the Vinyl, Phenyl, Ethynyl, and Methyl Complexes of Palladium and Platinum,” Organometallics 24, 715–723 (2005).

    Article  CAS  Google Scholar 

  30. V. P. Ananikov, D. G. Musaev, and K. Morokuma, “Critical Effect of Phosphane Ligands on the Mechanism of Carbon—Carbon Bond Formation Involving Palladium(II) Complexes: A Theoretical Investigation of Reductive Elimination from Square-Planar and T-Shaped Species,” Eur. J. Inorg. Chem., No. 34, 5390–5399 (2007).

    Article  Google Scholar 

  31. V. P. Ananikov, D. G. Musaev, and K. Morokuma, “Transition-Metal Catalyzed Carbon—Carbon Bond Formation: The Key of Homogeneous Catalysis,” in Computational Modeling for Homogeneous and Enzymatic Catalysis: A Knowledge-Base for Designing Efficient Catalysts, Ed. by K. Morokuma and D. G. Musaev (Wiley, Weinheim, 2008), pp. 131–148.

    Chapter  Google Scholar 

  32. A. A. C. Braga, G. Ujaque, and F. Maseras, “Mechanism of Palladium-Catalyzed Cross-Coupling Reactions,” in Computational Modeling for Homogeneous and Enzymatic Catalysis: A Knowledge-Base for Designing Efficient Catalysts, Ed. by K. Morokuma and D. G. Musaev (Wiley, Weinheim, 2008), pp. 109–130.

    Chapter  Google Scholar 

  33. S. P. Nolan and O. Navarro, “C—C Bond Formation by Cross-Coupling,” in Comprehensive Organometallic Chemistry III: From Fundamentals to Applications, Ed. by D. M. P. Mingos and R. H. Crabtree (Elsevier, Oxford, 2007), Vol. 11, pp. 1–37.

    Google Scholar 

  34. I. P. Beletskaya, “The Cross-Coupling Reactions of Organic Halides with Organic Derivatives of Tin, Mercury, and Copper Catalyzed by Palladium,” J. Organomet. Chem. 250, 551–564 (1983).

    Article  CAS  Google Scholar 

  35. I. P. Beletskaya, “Palladium Catalyzed C—C and C—Heteroatom Bond Formation Reactions,” Pure Appl. Chem. 69, 471–476 (1997).

    Article  CAS  Google Scholar 

  36. R. Narayanan and M. A. El-Sayed, “Effect of Catalysis on the Stability of Metallic Nanoparticles: Suzuki Reaction Catalyzed by PVP-Palladium Nanoparticles,” J. Am. Chem. Soc. 125, 8340–8347 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Y Li, X. M. Hong, D. M. Collard, and M. A. El-Sayed, “Suzuki Cross-Coupling Reactions Catalyzed by Palladium Nanoparticles in Aqueous Solution,” Org. Lett. 2, 2385–2388 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Y Li, E. Boone, and M. A. El-Sayed, “Size Effects of PVP-Pd Nanoparticles on the Catalytic Suzuki Reactions in Aqueous Solution,” Langmuir 18, 4921–4925 (2002).

    Article  CAS  Google Scholar 

  39. I. P. Beletskaya, A. N. Kashin, I. A. Khotina, and A. R. Khokhlov, “Efficient and Recyclable Catalyst of Palladium Nanoparticles Stabilized by Polymer Micelles Soluble in Water for Suzuki—Miyaura Reaction: Ostwald Ripening Process with Palladium Nanoparticles,” Synlett, No. 10, 1547–1552 (2008).

    Article  Google Scholar 

  40. R. Narayanan and M. A. El-Sayed, “FTIR Study of the Mode of Binding of the Reactants on the Pd Nanoparticle Surface during the Catalysis of the Suzuki Reaction,” J. Phys. Chem. B 109, 4357–4360 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. D. Astruc, “Palladium Nanoparticles as Efficient Green Homogeneous and Heterogeneous Carbon-Carbon Coupling Precatalysts: A Unifying View,” Inorg. Chem. 46, 1884–1894 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. A. K. Diallo, C. Ornelas, L. Salmon, J. R. Aranzaes, and D. Astruc, “‘Homeopathic’ Catalytic Activity and Atom-Leaching Mechanism in Miyaura—Suzuki Reactions under Ambient Conditions with Precise Dendrimer-Stabilized Pd Nanoparticles,” Angew. Chem., Int. Ed. Engl. 46, 8644–8648 (2007).

    Article  CAS  Google Scholar 

  43. R. Narayanan, C. Tabor, and M. A. El-Sayed, “Can the Observed Changes in the Size or Shape of a Colloidal Nanocatalyst Reveal the Nanocatalysis Mechanism Type: Homogeneous or Heterogeneous?” Top. Catal. 48, 60–74 (2008).

    Article  CAS  Google Scholar 

  44. J. A. Widegren and R. G. Finke, “A Review of the Problem of Distinguishing True Homogeneous Catalysis from Soluble or Other Metal-Particle Heterogeneous Catalysis under Reducing Conditions,” J. Mol. Catal. A: Chem. 198, 317–341 (2003).

    Article  CAS  Google Scholar 

  45. E. E. Finney and R. G. Finke, “Is It Homogeneous Pt(II) or Heterogeneous Pt(0)n Catalysis? Evidence That Pt(1.5-COD)C12 and Pt(1.5-COD)(CH3)2 Plus H2 from Heterogeneous, Nanoclusters Plus Bulk-Metal Pt(0) Hydrogenation Catalysts,” Inorg. Chim. Acta 359, 2979–2887 (2006).

    Article  Google Scholar 

  46. I. P. Beletskaya and A. V. Cheprakov, “The Heck Reaction as a Sharpening Stone of Palladium Catalysis,” Chem. Rev. 100, 3009–3066 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. N. J. Whitcombe, K. K. Hii, and S. E. Gibson, “Advances in the Heck Chemistry of Aryl Bromides and Chlorides,” Tetrahedron 57, 7449–7476 (2001).

    Article  CAS  Google Scholar 

  48. J. G. de Vries, “The Heck Reaction in the Production of Fine Chemicals,” Can. J. Chem. 79, 1086–1092 (2001).

    Article  Google Scholar 

  49. C. Amatore and A. Jutand, “Anionic Pd(0) and Pd(II) Intermediates in Palladium-Catalyzed Heck and Cross-Coupling Reactions,” Acc. Chem. Res. 33, 314–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. V. P. Ananikov, D. G. Musaev, and K. Morokuma, “Catalytic Triple Bond Activation and Vinyl Plus Vinyl Reductive Coupling by Pt(IV) Complexes: A Density Functional Study,” Organometallics 20, 1652–1667 (2001).

    Article  CAS  Google Scholar 

  51. V P. Ananikov, D. G. Musaev, and K. Morokuma, “Vinyl—Vinyl Coupling on Late Transition Metals through C—C Reductive Elimination Mechanism: A Computational Study,” J. Am. Chem. Soc. 124, 2839–2852 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. F. Y Zhao, M. Shirai, Y Ikushima, and M. Arai, “The Leaching and Re-Deposition of Metal Species from and Onto Conventional Supported Palladium Catalysts in the Heck Reaction of Iodobenzene and Methyl Acrylate in N-Methylpyrrolidone,” J. Mol. Catal. A: Chem. 180, 211–219 (2002).

    Article  CAS  Google Scholar 

  53. F. Zhao, K. Murakami, M. Shirai, and M. Arai, “Recyclable Homogeneous/Heterogeneous Catalytic Systems for the Heck Reaction through Reversible Transfer of Palladium Species between Solvent and Support,” J. Catal. 194, 479–483 (2000).

    Article  CAS  Google Scholar 

  54. J. G. de Vries, “A Unifying Mechanism for All High-Temperature Heck Reactions: The Role of Palladium Colloids and Anionic Species,” Dalton Trans., No. 3, 421–429 (2006).

    Article  PubMed  Google Scholar 

  55. A. H. M. de Vries, J. M. C. A. Mulders, J. H. M. Mommers, H. J. W. Henderickx, and J. G. de Vries, “Homeopathic Ligand-Free Palladium as a Catalyst in the Heck Reaction: A Comparison with a Palladacycle,” Org. Lett. 5, 3285–3288 (2003).

    Article  PubMed  Google Scholar 

  56. A. H. M. de Vries, F J. Parlevliet, L. S. van de Vondervoort, J. H. M. Mommers, H. J. W. Henderickx, M. A. N. Walet, and J. G. de Vries, “A Practical Recycle of a Ligand-Free Palladium Catalyst for Heck Reactions,” Adv. Synth. Catal. 344, 996–1002 (2002).

    Article  Google Scholar 

  57. M. B. Thathagar, J. E. Elshof, and G. Rothenberg, “Pd Nanoclusters in C—C Coupling Reactions: Proof of Leaching,” Angew. Chem., Int. Ed. Engl. 45, 2886–2890 (2006).

    Article  CAS  Google Scholar 

  58. K. Köhler, R. G. Heidenreich, J. G. E. Krauter, and J. Pietsch, “Highly Active Palladium/Activated Carbon Catalysts for Heck Reactions: Correlation of Activity, Catalyst Properties, and Pd Leaching,” Chem. —Eur. J. 8, 622–631 (2002).

    Article  Google Scholar 

  59. R. G. Heidenreich, E. G. E. Krauter, J. Pietsch, and K. Köhler, “Control of Pd Leaching in Heck Reactions of Bromoarenes Catalyzed by Pd Supported on Activated Carbon,” J. Mol. Catal. A: Chem. 182, 499–509 (2002).

    Article  Google Scholar 

  60. I. P. Beletskaya and A. V. Cheprakov, “Palladacycles in Catalysis—A Critical Survey,” J. Organomet. Chem. 689, 4055–4082 (2004).

    Article  CAS  Google Scholar 

  61. I. P. Beletskaya, A. N. Kashin, N. B. Karlstedt, A. V. Mitin, A. V. Cheprakov, and G. M. Kazankov, “NC-Palladacycles as Highly Effective Cheap Precursors for the Phosphine-Free Heck Reactions,” J. Organomet. Chem. 622, 89–96 (2001).

    Article  CAS  Google Scholar 

  62. M. T. Reetz and G. Lohmer, “Propylene Carbonate Stabilized Nanostructured Palladium Clusters as Catalysts in Heck Reactions,” Chem. Commun. (Cambridge, UK), No. 16, 1921–1922 (1996).

    Article  Google Scholar 

  63. M. T. Reetz and E. Westermann, “Phosphane-Free Palladium-Catalyzed Coupling Reactions: The Decisive Role of Pd Nanoparticles,” Angew. Chem., Int. Ed. Engl. 39, 165–168 (2000).

    Article  CAS  Google Scholar 

  64. M. T. Reetz and J. G. de Vries, “Ligand-Free Heck Reactions Using Low Pd-Loading,” Chem. Commun. (Cambridge, UK), No. 14, 1559–1563 (2004).

    Article  Google Scholar 

  65. C. Luo, Y Zhang, and Y Wang, “Palladium Nanoparticles in Poly(ethyleneglycol): The Efficient and Recyclable Catalyst for Heck Reaction,” J. Mol. Catal. A: Chem. 229, 7–12(2005).

    Article  CAS  Google Scholar 

  66. H. Weingärtner, “Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies,” Angew. Chem., Int. Ed. Engl. 47, 654–670 (2008).

    Article  Google Scholar 

  67. T. Welton, “Ionic Liquids in Catalysis,” Coord. Chem. Rev. 248, 2459–2477 (2004).

    Article  CAS  Google Scholar 

  68. Z. C. Zhang, “Catalysis in Ionic Liquids,” Adv. Catal. 49, 153–237 (2006).

    Article  CAS  Google Scholar 

  69. Y Zhou, “Recent Advances in Ionic Liquids for Synthesis of Inorganic Nanomaterials,” Curr. Nanosci. 1, 35–42 (2005).

    Article  CAS  ADS  Google Scholar 

  70. T. Welton and P. J. Smith, “Palladium Catalyzed Reactions in Ionic Liquids,” Adv. Organomet. Chem. 51, 251–284(2004).

    Article  CAS  Google Scholar 

  71. P. Migowski and J. Dupont, “Catalytic Applications of Metal Nanoparticles in Imidazolium Ionic Liquids,” Chem. Eur. J. 13, 32–39 (2007).

    Article  Google Scholar 

  72. C. C. Cassol, A. P. Umpierre, G. Machado, S. I. Wolke and J. Dupont, “The Role of Pd Nanoparticles in Ionic Liquid in the Heck Reaction,” J. Am. Chem. Soc. 127, 3298–3299 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. X. Yang, Z. Fei, D. Zhao, W H. Ang, Y Li, and P. J. Dyson, “Palladium Nanoparticles Stabilized by an Ionic Polymer and Ionic Liquid: A Versatile System for C—C Cross-Coupling Reactions,” Inorg. Chem. 47, 3292–3297 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. D. Zhao, Z. Fei, T. J. Geldbach, R. Scopelliti, and P. J. Dyson, “Nitrile-Functionalized Pyridinium Ionic Liquids: Synthesis, Characterization, and Their Application in Carbon—Carbon Coupling Reactions,” J. Am. Chem. Soc. 126, 15 876–15 882 (2004).

    CAS  Google Scholar 

  75. W. K. Cho, J. K. Lee, S. M. Kang, Y S. Chi, H.-S. Lee, and I. S. Choi, “Gold-Catalyzed Cyanosilylation Reaction: Homogeneous and Heterogeneous Pathways,” Chem. —Eur. J. 13, 6351–6358 (2007).

    Article  CAS  Google Scholar 

  76. A. T. Bell, “The Impact of Nanoscience on Heterogeneous Catalysis,” Science (Washington) 299, 1688–1691 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  77. M. Haruta and M. Date, “Advances in the Catalysis of Au Nanoparticles,” Appl. Catal., A 222, 427–437 (2001).

    Article  CAS  Google Scholar 

  78. C. Burda, X. Chen, R. Narayanan, and M. A. ElSayed, “Chemistry and Properties of Nanocrystals of Different Shapes,” Chem. Rev. 105, 1025–1102 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. J. Le Bars, U. Specht, J. S. Bradley, and D. G. Blackmond, “A Catalytic Probe of the Surface of Colloidal Palladium Particles Using Heck Coupling Reactions,” Langmuir 15, 7621–7625 (1999).

    Article  Google Scholar 

  80. R. Narayanan and M. A. El-Sayed, “Catalysis with Transition-Metal Nanoparticles in Colloidal Solution: Nanoparticle Shape Dependence and Stability,” J. Phys. Chem. B 109, 12 663–12 676 (2005).

    CAS  Google Scholar 

  81. M. DiVece, D. Grandjean, M. J.van Bael, C. P. Romero, X. Wang, S. Decoster, A. Vantomme, and P. Lievens, “Hydrogen-Induced Ostwald Ripening at Room Temperature in a Pd Nanocluster Film,” Phys. Rev. Lett. 100, 236 105 (4 pages) (2008).

    Google Scholar 

  82. R. S. Goeke and A. K. Datye, “Model Oxide Supports for Studies of Catalyst Sintering at Elevated Temperatures,” Top. Catal. 46, 3–9 (2007).

    Article  CAS  Google Scholar 

  83. A. K. Datye, Q. Xu, K. C. Kharas, and J. M. McCarty “Particle Size Distributions in Heterogeneous Catalysts: What Do They Tell Us about the Sintering Mechanism?” Catal. Today 111, 59–67 (2006).

    Article  CAS  Google Scholar 

  84. J. Hu and Y. B. Liu, “Pd Nanoparticle Aging and Its Implications in the Suzuki Cross-Coupling Reaction,” Langmuir 21, 2121–2123 (2005).

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  85. A. Howard, C. E. J. Mitchell, and R. G. Egdell, “Real Time STM Observation of Ostwald Ripening of Pd Nanoparticles on TiO2(110) at Elevated Temperature,” Surf. Sci. 515, L504–L508 (2002).

    Article  CAS  Google Scholar 

  86. A. Imre, D. L. Beke, E. Gontier-Moya, I. A. Szabo, and E. Gillet, “Surface Ostwald Ripening of Pd Nanoparticles on the MgO(100) Surface,” Appl. Phys. A: Mater. Sci. Process. 71, 19–22(2000).

    CAS  ADS  Google Scholar 

  87. Y. Sun, B. Mayers, and Y. Xia, “Transformation of Silver Nanospheres into Nanobelts and Triangular Nanopiates through a Thermal Process,” Nano Lett. 3, 675–679 (2003).

    Article  CAS  ADS  Google Scholar 

  88. K. M. Neyman, C. Inntam, V. A. Nasluzov, R. Kosarev, and N. Rösch, “Adsorption of d-Metal Atoms on the Regular MgO(00l) Surface: Density Functional Study of Cluster Models Embedded in an Elastic Polarizable Environment,” Appl. Phys. A: Mater. Sci. Proc. 78, 823–828 (2004).

    Article  CAS  ADS  Google Scholar 

  89. C. Inntam, L. V. Moskaleva, K. M. Neyman, V. A. Nasluzov, and N. Rösch, “Adsorption of Dimers and Trimers of Cu, Ag, and Au on Regular Sites and Oxygen Vacancies of the MgO(00l) Surface: A Density Functional Study Using Embedded Cluster Models,” Appl. Phys. A: Mater. Sci. Proc. 82, 181–189 (2006).

    Article  CAS  ADS  Google Scholar 

  90. C. Inntam, L. V. Moskaleva, I. V. Yudanov, K. M. Neyman, and N. Rösch, “Adsorption of Cu4, Ag4, and Au4 Particles on the Regular MgO(001) Surface: A Density Functional Study Using Embedded Cluster Models,” Chem. Phys. Lett. 417, 515–520 (2006).

    Article  CAS  ADS  Google Scholar 

  91. V. Musolino, A. Selloni, and R. Car, “First-Principles Study of Adsorbed Cun (n = 1–4) Microclusters on MgO(100): Structural and Electronic Properties,” J. Chem. Phys. 108, 5044–5054 (1998).

    Article  CAS  ADS  Google Scholar 

  92. K. M. Neyman, C. Inntam, L. V. Moskaleva, and N. Rösch, “Density Functional Embedded Cluster Study of Cu4, Ag4, and Au4 Species Interacting with Oxygen Vacancies on the MgO(00l) Surface,” Chem. Eur. J. 13, 277–286 (2007).

    Article  Google Scholar 

  93. Metal Clusters at Surfaces, Ed. by K. H. Meiwes-Broer (Springer, Berlin, 2000).

    Google Scholar 

  94. M. Moseler, H. Häkkinen, and U. Landman, “Supported Magnetic Nanoclusters: Soft Landing of Pd Clusters on a MgO Surface,” Phys. Rev. Lett. 89, 176 103 (4 pages) (2002).

    Article  CAS  Google Scholar 

  95. L. Giordano, C. Di Valentin, J. Goniakowski, and G. Pacchioni, “Nucleation of Pd Dimers at Defect Sites of the MgO(100) Surface,” Phys. Rev. Lett. 92, 096 105 (4 pages) (2004).

    Article  Google Scholar 

  96. F Vies, F. Illas, and K. M. Neyman, “On the Mechanism of Formation of Metal Nanowires by Self-Assembly” Angew. Chem., Int. Ed. Engl. 46, 7094–7097 (2007).

    Article  Google Scholar 

  97. I. P. Beletskaya and V P. Ananikov, “Unusual Influence of the Structures of Transition-Metal Complexes on Catalytic C—S and C—Se Bond Formation under Homogeneous and Heterogeneous Conditions,” Eur. J. Org. Chem. 3431–3444 (2007).

  98. V P. Ananikov, N. V Orlov, I. P. Beletskaya, V. N. Khrustalev, M. Yu. Antipin, and T. V. Timofeeva, “New Approach for Size- and Shape-Controlled Preparation of Pd Nanoparticles with Organic Ligands: Synthesis and Application in Catalysis,” J. Am. Chem. Soc. 129, 7252–7253 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. V. P. Ananikov, N. V. Orlov, and I. P. Beletskaya, “An Efficient and Convenient Synthesis of b-Vinyl Sulfides in Nickel Catalyzed Regioselective Addition of Thiols to Terminal Alkynes under Solvent-Free Conditions,” Organometallics 25, 1970–1977 (2006).

    Article  CAS  Google Scholar 

  100. V. P. Ananikov, N. V. Orlov, and I. P. Beletskaya, “Highly Efficient Nickel-Based Heterogeneous Catalytic System with Nanosized Structural Organization for Selective Se—H Bond Addition to Terminal and Internal Alkynes,” Organometallics 26, 740–750 (2007).

    Article  CAS  Google Scholar 

  101. V. P. Ananikov, S. S. Zalesskii, N. V. Orlov, and I. P. Beletskaya, “Nickel-Catalyzed Addition of Benzenethiol to Alkynes: Formation of Carbon—Sulfur and Carbon—Carbon Bonds,” Izv. Akad. Nauk, Ser. Khim., No. 11, 2030–2034 (2006) [Russ. Chem. Bull. 55 (11), 2109–2113 (2006)].

    Google Scholar 

  102. V. P. Ananikov, D. A. Malyshev, and I. P. Beletskaya, “NiCl2 Catalyzed Regioselective Hydrothiolation of Alkynes,” Adv. Synth. Catal. 347, 1993–2001 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Ananikov.

Additional information

Original Russian Text © V.P. Ananikov, I.P. Beletskaya, 2010, published in Rossiiskie nanotekhnologii, 2010, Vol. 5, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ananikov, V.P., Beletskaya, I.P. Using nanosized, homogeneous, and heterogeneous catalytic systems in organic synthesis: changing the structure of active center in chemical reactions in solution. Nanotechnol Russia 5, 1–17 (2010). https://doi.org/10.1134/S1995078010010015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078010010015

Keywords

Navigation