Skip to main content
Log in

Adsorption of dimers and trimers of Cu, Ag, and Au on regular sites and oxygen vacancies of the MgO(001) surface: a density functional study using embedded cluster models

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We studied the adsorption of small coinage metal aggregates Mn (M = Cu, Ag, Au; n=2,3) on the ideal MgO(001) as well as on oxygen vacancies, Fs and Fs + using a first-principle computational approach. We applied a generalized-gradient density functional in combination with cluster embedding in an elastic polarizable environment, which provides an accurate description of substrate relaxation. In the same way as single adsorbed atoms, metal moieties on regular O2- surface sites are polarized and interact mainly by electrostatic attraction, counteracted by Pauli repulsion. However, adsorption on vacancies involves some transfer of electron density to the adsorbate, particularly for Au2. Our cluster results for Cu2 and Cu3 on regular O2- sites agree quantitatively with previous results of periodic slab models. The adsorption energy per atom decreases from dimers to trimers in line with the fact that metal-metal cohesion dominates over metal-oxide interaction. Compared to regular sites on flat terraces, dimerization is not particularly favorable on Fs sites and it is unfavorable on Fs + sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bowker M (2002) Nature Mater 1:205

    Article  ADS  Google Scholar 

  2. Lambert RM, Pacchioni G (eds) (1997) Chemisorption and Reactivity on Supported Clusters and Thin Films: Towards an Understanding of Microscopic Processes in Catalysis NATO ASI Series E, Vol 331. Kluwer, Dordrecht

    Google Scholar 

  3. Freund H-J (1997) Angew Chem Int Edit 36:452

    Article  Google Scholar 

  4. Heiz U, Schneider WD (2001) Crit Rev Solid State Mater Sci 26:251

    Article  ADS  Google Scholar 

  5. Bartholomew CH (2001) Appl Catal A 212:17

    Article  Google Scholar 

  6. Yudanov I, Pacchioni G, Neyman K, Rösch N (1997) J Phys Chem B 101:2786

    Article  Google Scholar 

  7. Grönbeck H, Broqvist P (2003) J Chem Phys 119:3896

    Article  ADS  Google Scholar 

  8. Markovits A, Paniagua JC, Lopez N, Minot C, Illas F (2003) Phys Rev B 67:115417

    Article  Google Scholar 

  9. Zhukovskii YF, Kotomin EA, Borstel G (2004) Vacuum 74:235

    Article  Google Scholar 

  10. Matveev AV, Neyman KM, Yudanov IV, Rösch N (1999) Surf Sci 426:123

    Article  ADS  Google Scholar 

  11. Ferrari AM, Pacchioni G (1996) J Phys Chem 100:9032

    Article  Google Scholar 

  12. Kantorovich LN, Shluger AL, Sushko PV, Gunster J, Stracke P, Goodman DW, Kempter V (1999) Faraday Discuss 114:173

    Article  Google Scholar 

  13. Bogicevic A, Jennison DR (1999) Surf Sci 437:L741

    Article  Google Scholar 

  14. Nasluzov VA, Rivanenkov VV, Gordienko AB, Neyman KM, Birkenheuer U, Rösch N (2001) J Chem Phys 115:8157

    Article  ADS  Google Scholar 

  15. Yang ZX, Wu RQ, Zhang QM, Goodman DW (2002) Phys Rev B 65:155407

    Article  Google Scholar 

  16. Bogicevic A, Jennison DR (2002) Surf Sci 515:L481

    Article  Google Scholar 

  17. Neyman KM, Inntam C, Matveev AV, Nasluzov VA, Rösch N (2005) J Am Chem Soc 27:11652

    Article  Google Scholar 

  18. Ferrari AM, Xiao C, Neyman KM, Pacchioni G, Rösch N (1999) Phys Chem Chem Phys 1:4655

    Article  Google Scholar 

  19. Moseler M, Häkkinen H, Landman U (2002) Phys Rev Lett 89:176103

    Article  PubMed  ADS  Google Scholar 

  20. Giordano L, Di Valentin C, Goniakowski J, Pacchioni G (2004) Phys Rev Lett 92:096105

    Article  PubMed  ADS  Google Scholar 

  21. Del Vitto A, Sousa C, Illas F, Pacchioni G (2004) J Chem Phys 121:7457

    Article  PubMed  ADS  Google Scholar 

  22. Sljivancanin Z, Pasquarello A (2003) Phys Rev Lett 90:247202

    Article  PubMed  ADS  Google Scholar 

  23. Cai S-H, Neyman KM, Hu A, Rösch N (2000) J Phys Chem B 104:11506

    Article  Google Scholar 

  24. Musolino V, Selloni A, Car R (1998) J Chem Phys 108:5044

    Article  ADS  Google Scholar 

  25. Musolino V, Selloni A, Car R (1999) Phys Rev Lett 83:3242

    Article  ADS  Google Scholar 

  26. Haas G, Menck A, Brune H, Barth JV, Venables JA, Kern K (2000) Phys Rev B 61:11105

    Article  Google Scholar 

  27. Alstrup I, Møller PJ (1988) Appl Surf Sci 33–34:143

    Article  Google Scholar 

  28. Meunier M, Henry CR (1994) Surf Sci 307–309:514

    Article  Google Scholar 

  29. Bäumer M, Frank M, Heemeier M, Kühnemuth R, Stempel S, Freund H-J (2000) Surf Sci 454–456:957

    Article  Google Scholar 

  30. Dunlap BI, Rösch N (1990) Adv Quant Chem 21:317

    Article  Google Scholar 

  31. Belling T, Grauschopf T, Krüger S, Mayer M, Nörtemann F, Staufer M, Zenger C, Rösch N (1999) In Bungartz H-J, Durst F, Zenger C (eds) High Performance Scientific and Engineering Computing, Lecture Notes in Computational Science and Engineering, Vol 8. Springer, Berlin Heidelberg, p 439–453

  32. Belling T, Grauschopf T, Krüger S, Nörtemann F, Staufer M, Mayer M, Nasluzov VA, Birkenheuer U, Hu A, Matveev AV, Shor AM, Fuchs-Rohr MSK, Neyman KM, Ganyushin DI, Kerdcharoen T, Woiterski A, Gordienko AB, Majumder S, Rösch N (2004) ParaGauss, Version 3.0. Technische Universität München

  33. Becke AD (1988) Phys Rev A 38:3098

    Article  PubMed  ADS  Google Scholar 

  34. Perdew JP (1986) Phys Rev B 33:8822

    Article  ADS  Google Scholar 

  35. Perdew JP (1986) Phys Rev B 34:7406

    Article  ADS  Google Scholar 

  36. Häberlen OD, Rösch N (1992) Chem Phys Lett 199:491

    Article  ADS  Google Scholar 

  37. Rösch N, Krüger S, Mayer M, Nasluzov VA (1996) In: Seminario JM (ed) Recent Developments and Applications of Modern Density Functional Theory, Theoretical and Computational Chemistry Series, Vol 4. Elsevier, Amsterdam p 497

  38. Rösch N, Matveev A, Nasluzov VA, Neyman KM, Moskaleva L, Krüger S (2004) In: Schwerdtfeger P (ed) Relativistic Electronic Structure Theory. Part II: Applications. Theoretical and Computational Chemistry Series, Vol 14. Elsevier, Amsterdam p 656

  39. Neyman KM, Inntam C, Nasluzov VA, Kosarev R, Rösch N (2004) Appl Phys A 78:823

    Article  ADS  Google Scholar 

  40. Fuentealba P, Szentpaly LV, Preuss M, Stoll M (1985) J Phys B 18:1287

    Article  ADS  Google Scholar 

  41. Catlow CRA, Mackrodt WC (1982) In: Computer Simulation of Solids, Lecture Notes in Physics, Vol 166, Catlow CRA, Mackrodt WC. Springer, Berlin Heidelberg, pp 3–20

  42. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  ADS  Google Scholar 

  43. Morse MD (1986) Chem Rev 86:1049

    Article  Google Scholar 

  44. Simard B, Hackett PA, James AM, Langriedge-Smith PRR (1991) Chem Phys Lett 186:415

    Article  ADS  Google Scholar 

  45. Krämer HG, Beutel V, Weyers K, Demtröder W (1992) Chem Phys Lett 193:331

    Article  ADS  Google Scholar 

  46. Görling A, Trickey SB, Gisdakis P, Rösch N (1999) In: Brown J, Hofmann P (eds) Topics in Organometallic Chemistry, Vol 4. Springer, Berlin Heidelberg, pp 109–163

  47. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  ADS  Google Scholar 

  48. Walch SP, Laskowski BC (1986) J Chem Phys 84:2734

    Article  ADS  Google Scholar 

  49. Calaminici P, Köster AM, Russo N, Salahub DR (1996) J Chem Phys 105:9546

    Article  ADS  Google Scholar 

  50. Bonačič-Koutecky V, Češpiva L, Fantucci P, Koutecky J (1993) J Chem Phys 98:7981

    Google Scholar 

  51. Lee HM, Ge M, Sahu BR, Tarakeshwar P, Kim KS (2003) J Phys Chem B 107:9994

    Article  Google Scholar 

  52. Wang J, Wang G, Zhao J (2002) Phys Rev B 66:035418

    Article  MathSciNet  ADS  Google Scholar 

  53. Häkkinen H, Landman U (2000) Phys Rev B 62:R2287

    Article  ADS  Google Scholar 

  54. Weltner Jr W, Van Zee RJ (1984) Annu Rev Phys Chem 35:291

    Article  ADS  Google Scholar 

  55. Besler BH, Merz KM, Kollman PA (1990) J Comp Chem 11:431

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Notker Rösch.

Additional information

PACS

73.20.Hb; 73.22.-f; 71.15.Mb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inntam, C., Moskaleva, L., Neyman, K. et al. Adsorption of dimers and trimers of Cu, Ag, and Au on regular sites and oxygen vacancies of the MgO(001) surface: a density functional study using embedded cluster models. Appl. Phys. A 82, 181–189 (2006). https://doi.org/10.1007/s00339-005-3352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3352-8

Keywords

Navigation