Skip to main content
Log in

Formation of silver nanoparticles in PVP matrix in supercritical CO2: Small-angle X-ray scattering and modeling

  • Articles
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The process of silver-particle formation in a PVP matrix in supercritical carbon dioxide is investigated by means of small-angle X-ray scattering (SAXS). Application of modern methods of SAXS data interpretation, including procedure of ab initio modeling of particle structure, allowed us for the first time to reveal structural organization of both individual metal nanoparticles and of their clusters incorporated in the polymer matrix. It is shown that pores in PVP films are not simple cavities; they have complex structures which are exhibited when these cavities are contrasted (filled) with metal compounds and/or reduced metallic nanoparticles. As a result, the shape, size, and size distribution of the obtained metallic nanoparticles and their clusters depended on the structure of the polymeric matrix used as a formation medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Moffitt, H. Vali, and A. Eisenberg, Chem. Mater. 10, 1021 (1998).

    Article  CAS  Google Scholar 

  2. T. Hashimoto, M. Harada, and N. Sakamoto, Macromolecules, 32, 6867 (1999).

    Article  CAS  ADS  Google Scholar 

  3. R. S. Underhill and G. Liu, Chem. Mater. 12, 2082 (2000).

    Article  CAS  Google Scholar 

  4. Z. Lu, G. Liu, H. Phillips, J. M. Hill, J. Chang, and R. A. Kydd, Nano Lett, 1 683 (2001).

    Article  CAS  ADS  Google Scholar 

  5. L. M. Bronstein, D. I. Svergun, and A. R. Khokhlov, in Polymer Gels and Networks, Ed. by Y. Osada and A. R. Khokhlov (Marcel Dekker, New York, 2001), pp. 103–130.

    Google Scholar 

  6. Metal-Polymer Nanocomposites, Ed. by L. Nicolais and G. Carotenuto (John Wiley and Sons, Hoboken, NJ, United States, 2004), p. 320.

    Google Scholar 

  7. R. S. Underhill and G. Liu, Chem. Mater. 12, 2082 (2000).

    Article  CAS  Google Scholar 

  8. D. I. Svergun, M. B. Kozin, P. V. Konarev, E. V. Shtykova, V. V. Volkov, D. M. Chernyshov, P. M. Valetsky, and L. M. Bronstein, Chem. Mater. 12, 3552 (2000).

    Article  CAS  Google Scholar 

  9. Nanotechnology Research Directions: Vision for Nanotechnology in the Next Decade, Ed. by M. C. Roco, R. S. Williams, and P. Alivisatos (Kluwer, New York, 1999; Mir, Moscow, 2002).

    Google Scholar 

  10. G. Yu. Yurkov, D. A. Astaf’ev, L. N. Nikitin, Yu. A. Koksharov, N. A. Kataeva, E. V. Shtykova, K. A. Dembo, V. V. Volkov, A. R. Khokhlov, and S. P. Gubin, Neorg. Mater. 42(5), 556–562 (2006) [Inorg. Mater. 42 (5), 496–502 (2006)].

    Article  Google Scholar 

  11. V. I. Salyanov, A. I. Evseev, V. I. Popenko, A. A. Gasanov, K. A. Dembo, O. V. Kondrashina, Yu. V. Shtykova, and Yu. M. Yevdokimov, Biofizika, 52(3), 452–459 (2007) [Biophysics 52 (3), 288–292 (2007)].

    Google Scholar 

  12. T. Liu, C. Burger, and B. Chu, Prog. Polym. Sci. 28, 5–26 (2003).

    Article  Google Scholar 

  13. V. V. Volkov, V. V. Klechkovskaya, E. V. Shtykova, K. A. Dembo, N. A. Arkharova, G. I. Ivakin, and R. Yu. Smyslov, Kristallografiya, 54(2), 197–201 (2009) [Crystallogr. Rep. 54 (2), 169–173 (2009)].

    Google Scholar 

  14. S. Xu, J. Zhang, C. Paquet, Y. Lin, and E. Kumacheva, Adv. Funct. Mater. 13, 468–472 (2003).

    Article  CAS  Google Scholar 

  15. H. H. Pham and E. Kumacheva, Macromol. Symp. 192 191–205 (2003).

    Article  CAS  Google Scholar 

  16. A. Alteheld, I. Gourevich, L. M. Field, C. Paquet, and E. Kumacheva, Macromolecules 38, 3301–3306 (2005).

    Article  CAS  ADS  Google Scholar 

  17. Lifeng Qi, Zirong Xu, Xia Jiang, Van Li, and Mingi Wang, Bioorg. Med. Chem. Lett. 15, 1397–1399 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Yong Zheng, Ying Yi, Yipeng Qi, Yuting Wang, Weian Zhiang, and Ming Du, Bioorg. Med. Chem. Lett. 16, 4127–4129 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. L. S. Villata, E. Wolcan, M. R. Felis, and A. L. Caparelli, J. Photochem. Photobiol., A 115, 185 (1998).

    Article  CAS  Google Scholar 

  20. A. I. Cooper, J. Mater. Chem. 10, 207–234 (2000).

    Article  CAS  Google Scholar 

  21. S. G. Kazarian, Polym. Sci., Ser. C 42(1), 78 (2000).

    Google Scholar 

  22. E. J. Beckman, J. Supercrit. Fluids 28, 121–191 (2004).

    Article  CAS  Google Scholar 

  23. M. A. McHugh and V. J. Krukonis, Supercritical Fluid Extraction: Principles and Practice (Butterworth-Heinemann, Boston, MA, United States, 1994).

    Google Scholar 

  24. J. L. Kendall, D. A. Canelas, J. L. Young, and J. M. DeSimone, Chem. Rev. 99, 543–563 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. E. E. Said-Galiyev, I. V. Pototskaya, and Ya. S. Vygodskii, Vysokomol. Soedin., Ser. C 46(12), 2124–2139 (2004) [Polym. Sci., Ser. C 46 (1), 1–13 (2004)].

    CAS  Google Scholar 

  26. E. N. Sobol’, V. N. Bagratashvili, A. E. Sobol’, and S. M. Howdle, Dokl. Akad. Nauk 356(6), 777–780 (1997) [Dokl. Phys. Chem. 356 (4–6), 346–348 (1997)].

    Google Scholar 

  27. E. J. Beckman, J. Supercrit. Fluids 28, 121–191 (2004).

    Article  CAS  Google Scholar 

  28. Small-Angle X-Ray Scattering, Ed. by O. Glatter and O. Kratky (Academic, London, 1982), p. 515.

    Google Scholar 

  29. L. A. Feigin and D. I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Plenum, New York, 1987).

    Google Scholar 

  30. D. I. Svergun, J. Appl. Crystallogr. 33, 530–534 (2000).

    Article  CAS  Google Scholar 

  31. D. I. Svergun and M. H. Koch, Curr. Opin. Struct. Biol. 12(5), 654 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. D. I. Svergun, J. Appl. Crystallogr. 40, S10–S17 (2007).

    Article  CAS  Google Scholar 

  33. M. H. Koch, P. Vachette, and D. I. Svergun, Q. Rev. Biophys. 36(2), 147–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. M. V. Petoukhov and D. I. Svergun, Curr. Opin. Struct. Biol. 17(5), 562–571 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. D. I. Svergun, J. Appl. Crystallogr. 25 495–503 (1992).

    Article  Google Scholar 

  36. D. I. Svergun, Biophys. J. 76(6), 2879 (1999).

    Article  CAS  PubMed  ADS  Google Scholar 

  37. V. V. Volkov and D. I. Svergun, J. Appl. Crystallogr. 36(3–1), 860–864 (2003).

    Article  CAS  Google Scholar 

  38. P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. J. Koch, and D. I. Svergun, J. Appl. Crystallogr. 36(5), 1277–1282 (2003).

    Article  CAS  Google Scholar 

  39. P. V. Konarev, V. V. Volkov, M. V. Petoukhov, and D. I. Svergun, J. Appl. Crystallogr. 39(2), 277–286 (2006).

    Article  CAS  Google Scholar 

  40. M. V. Petoukhov, P. V. Konarev, A. G. Kikhney, and D. I. Svergun, J. Appl. Crystallogr. 40(s1), s223–s228 (2007).

    Article  CAS  Google Scholar 

  41. V. V. Volkov, V. A. Lapuk, R. L. Kayushina, E. V. Shtykova, E. Yu. Varlamova, M. Malfois, and D. I. Svergun, J. Appl. Crystallogr. 36, 503–508 (2003).

    Article  CAS  Google Scholar 

  42. E. V. Shtykova, E. V. Shtykova, Jr., V. V. Volkov, P. V. Konarev, A. T. Dembo, E. E. Makhaeva, I. A. Ronova, A. R. Khokhlov, H. Reynaers, and D. I. Svergun, J. Appl. Crystallogr. 36, 669–673 (2003).

    Article  CAS  Google Scholar 

  43. L. M. Bronstein, S. N. Sidorov, V. Zhirov, D. Zhirov, Y. A. Kabachii, S. Y. Kochev, P. M. Valetsky, B. Stein, O. I. Kiseleva, S. N. Polyakov, E. V. Shtykova, E. V. Nikulina, D. I. Svergun, and A. R. Khokhlov, J. Phys. Chem. B 109, 18 786–18 798 (2005).

    Article  CAS  Google Scholar 

  44. E. V. Shtykova, X. Huang, N. Remmes, D. Baxter, B. Stein, B. Dragnea, D. I. Svergun, and L. M. Bronstein, J. Phys. Chem. C 111(49), 18 078–18 086 (2007).

    Article  CAS  Google Scholar 

  45. E. V. Shtykova, X. Gao, X. Huang, J. C. Dyke, A. L. Schmucker, N. Remmes, D. V. Baxter, B. Stein, B. Dragnea, P. V. Konarev, D. I. Svergun, and L. M. Bronstein, J. Phys. Chem. C 112(43), 16 809–16 817 (2008).

    Article  CAS  Google Scholar 

  46. E. E. Said-Galiev, A. I. Stakhanov, I. V. Blagodatskikh, E. M. Ivanova, A. R. Khokhlov, A. V. Naumkin, I. O. Volkov, V. V. Volkov, E. V. Shtykova, K. A. Dembo, and S. A. Pisarev, Vysokomol. Soedin., Ser. A 51 (2009) (in press) [Polym. Sci. 51 (2009) (in press)].

  47. A. O. Rybaltovskii, A. A. Aksenov, V. I. Gerasimova, Yu. S. Zavorotskii, V. K. Popov, V. V. Zosimov, and V. N. Bagratashvili, Sverkhkrit. Flyuidy: Teor. Prakt. 3(2), 74–81 (2008).

    Google Scholar 

  48. A. O. Rybaltovskii, A. A. Aksenov, V. I. Gerasimova, V. V. Zosimov, V. K. Popov, A. B. Solov’eva, P. S. Timashev, and V. N. Bagratashvili, Sverkhkrit. Flyuidy: Teor. Prakt. 3(1), 50–57 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Shtykova.

Additional information

Original Russian Text © E.V. Shtykova, K.A. Dembo, V.V. Volkov, E.E. Said-Galiev, A.I. Stakhanov, A.R. Khokhlov, 2009, published in Rossiiskie nanotekhnologii, 2009, Vol. 4, Nos. 9–10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shtykova, E.V., Dembo, K.A., Volkov, V.V. et al. Formation of silver nanoparticles in PVP matrix in supercritical CO2: Small-angle X-ray scattering and modeling. Nanotechnol Russia 4, 700–710 (2009). https://doi.org/10.1134/S1995078009090122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078009090122

Keywords

Navigation