Skip to main content
Log in

Single-Stage Formation of Film Polymer Composites in Supercritical Colloid Solutions of Nanoparticles Obtained by Laser Ablation

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract—A review of earlier studies is presented together with new results on the creation of highly concentrated colloid solutions with nanoparticles of noble metals (gold and silver) in a supercritical carbon dioxide (SC–CO2) medium and the development of a single-stage method for the production of polymer nanocomposites. The effect of the SC–CO2 density on the dynamics of the formation and decomposition of supercritical fluids (SCFs) of silver and gold nanocolloids in the process of pulsed laser ablation and after its termination is studied. The possibility of the formation of colloids from bimetallic nanoparticles was considered. The effective dielectric permittivity of a colloid solution of silver nanoparticles in SC–CO2 is calculated by the numerical modeling of extinction spectra in the dipole approximation at various densities, with consideration for the size of nanoparticles and the degree of their asphericity. The formation of various film nanocomposites based on a porous copolymer polytetrafluoroethylene—vinylidenefluoride with ruby nanoparticles and two modifications of pure porous polytetrafluoroethylene with silver nanoparticles in the same SCF reactor and with a single technological process is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. P. M. Ajayan, L. S. Schadle, and P. V. Braun, Nanocomposite Science and Technology (Wiley, New York, 2006).

    Google Scholar 

  2. J. H. Koo, Polymer Nanocomposites (McGraw-Hill Professional, New York, 2006).

    Google Scholar 

  3. Y. W. Mai and Z. Z. Yu, Polymer Nanocomposites (Woodhead, Cambridge, UK, 2006).

    Book  Google Scholar 

  4. F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, J. Compos. Mater. 40, 1511 (2006).

    Article  CAS  Google Scholar 

  5. Polymer Nanocomposites Handbook, Ed. by R. K. Gupta, E. Kennel, and K. J. Kim (CRC, Boca Raton, FL, 2009).

    Google Scholar 

  6. Physical Properties and Applications of Polymer Nanocomposites, Ed. by S. C. Tjong and Y. W. Mai (Elsevier, Amsterdam, 2010).

    Google Scholar 

  7. J. W. Rhim, H. M. Park, and C. S. Ha, Prog. Polym. Sci. 38, 1629 (2013).

    Article  CAS  Google Scholar 

  8. Y. Zare, Waste Manage. 33, 598 (2013).

    Article  CAS  Google Scholar 

  9. M. K. Hedayati, F. Faupel, and M. Elbahri, Materials 7, 1221 (2014).

    Article  Google Scholar 

  10. Y. W. Mai and Z. Z. Yu, Polymer Nanocomposites (Woodhead, Cambridge, UK, 2006).

    Book  Google Scholar 

  11. D. L. Tomasko, X. Han, D. Liu, and W. Gao, Curr. Opin. Solid State Mater. Sci. 7, 407 (2003).

    Article  CAS  Google Scholar 

  12. V. N. Bagratashvili, M. S. Vakshtein, Yu. S. Zavorotnyi, L. I. Krotova, A. O. Manyashin, V. K. Popov, A. O. Rybaltovskii, I. I. Taraskina, and P. S. Timashev, Persp. Mater., No. 2, 39 (2010).

  13. V. N. Bagratashvili, S. G. Dorofeev, A. A. Ischenko, V. V. Koltashev, N. N. Kononov, A. A. Krutikova, A. O. Rybaltovskii, and G. V. Fetisov, Russ. J. Phys. Chem. B 4, 1164 (2010).

    Article  Google Scholar 

  14. A. O. Rybaltovskii, Yu. S. Zavorotnyi, and A. P. Sviridov, E. D. Feklichev, A. A.Ishchenko, and V. N. Bagratashvili, Nanotechnol. Russ. 10, 802 (2015).

    Article  CAS  Google Scholar 

  15. A. O. Rybaltovskii, Yu. S. Zavorotnyi, N. V. Minaev, V. K. Popov, D. S. Rubashnaya, and P. S. Timashev, Russ. J. Phys. Chem. B 10, 1033 (2016).

    Article  CAS  Google Scholar 

  16. V. K. Popov, V. N. Bagratashvili, L. I. Krotova, A. O. Rybaltovskii, D. C. Smith, P. S. Timashev, J. Yang, Yu. S. Zavorotnyi, and S. M. Howdle, Green Chem. 3, 2696 (2011).

    Article  Google Scholar 

  17. A. V. Simakin, V. V. Voronov, N. A. Kirichenko, and G. A. Shafeev, Appl. Phys. A 79, 1127 (2004).

    Article  CAS  Google Scholar 

  18. G. W. Yang, Prog. Mater. Sci. 52, 648 (2007).

    Article  CAS  Google Scholar 

  19. Laser Ablation in Liquids: Princi ples and Applications in the Preparation of Nanomaterials, Ed. by G. Yang (CRC, Boca Raton, FL, 2012).

    Google Scholar 

  20. H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, Adv. Funct. Mater. 22, 1333 (2012).

    Article  Google Scholar 

  21. K.-I. Saitow, T. Yamamura, and T. Minami, J. Phys. Chem. C 112, 18340 (2008).

    Article  CAS  Google Scholar 

  22. S. Machmudah, Y. Kuwahara, M. Sasaki, and M. Goto, J. Supercrit. Fluids 60, 63 (2011).

    Article  CAS  Google Scholar 

  23. S. Wei and K. Saitow, Rev. Sci. Instrum. 83, 73110 (2012).

    Article  Google Scholar 

  24. N. V. Minaev, V. G. Arakcheev, A. O. Rybaltovskii, V. V. Firsov, and V. N. Bagratashvili, Russ. J. Phys. Chem. B 9, 1074 (2015).

    Article  CAS  Google Scholar 

  25. A. O. Rybaltovskii, V. M. Buznik, Yu. S. Zavorotny, N. V. Minaev, P. S. Timashev, S. N. Churbanov, and B. N. Bagratashvili, Russ. J. Phys. Chem. B 12, 1160 (2018).

    Article  CAS  Google Scholar 

  26. V. K. Popov, V. N. Bagratashvili, L. I. Krotova, A. O. Rybaltovskii, D. C. Smith, P. S. Timashev, J. Yang, Yu. S. Zavorotnyi, and S. M. Howdle, Green Chem. 3, 2696 (2011).

    Article  Google Scholar 

  27. B. N. Bagratashvili, A. B. Solov’eva, N. N. Glagolev, A. V. Cherkasova, I. V. Andreeva, and P. S. Timashev, Russ. J. Phys. Chem. 5, 1144 (2011).

    Article  CAS  Google Scholar 

  28. V. N. Bagratashvili, M. Vakshtein, Yu. S. Zavorotnyi, L. I. Krotova, A. O. Manyashin, V. K. Popov, A. O. Rybaltovskii, I. I. Taraskina, and P. S. Timashev, Persp. Mater. 2, 39 (2010).

    Google Scholar 

  29. V. N. Bagratashvili, S. G. Dorofeev, A. A. Ischenko, V. V. Koltashev, N. N. Kononov, A. A. Krutikova, A. O. Rybaltovskii, and G. V. Fetisov, Russ. J. Phys. Chem. 4, 1164 (2010).

    Article  Google Scholar 

  30. N. G. Khlebtsov and L. A. Dykman, J. Quant. Spectrosc. Radiat. Transfer 111, 1 (2010).

    Article  CAS  Google Scholar 

  31. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).

    Article  CAS  Google Scholar 

  32. Y.-X. Yu, J. Phys. Chem. B 109, 13375 (2005).

    Article  Google Scholar 

  33. K.-I. Saitow, J. Phys. Chem. B 109, 3731 (2005).

    Article  CAS  Google Scholar 

  34. G. B. Sergeev, Nanochemistry (Mosk. Gos. Univ., Moscow, 2007) [in Russian].

    Google Scholar 

  35. A. D. Pomogailo, A. S. Rozenberg, and I. E. Uflyand, Nanoparticles of Metals in Polymers (Khimiya, Moscow, 2000) [in Russian].

    Google Scholar 

  36. D. A. Lemenovskii, G. P. Brusova, V. V. Timofeev, S. A. Yur’in, V. N. Bagratashvili, and V. K. Popov, Priroda (Moscow, Russ. Fed.) 1090 (6), 42 (2006).

  37. V. Buznik, Yu. M. Vol’fkovich, V. I. Gryaznov, O. V. Dvoretskaya, M. A. Smul’skaya, V. E. Sosenkin, P. S. Timashev, V. K. Ivanov, A. A. Fomkin, and G. Yu. Yurkov, Persp. Mater., No. 9, 59 (2015).

  38. A. O. Rybaltovskii, V. M. Buznik, Yu. S. Zavorotny, P. S. Timashev, S. N. Churbanov, and V. N. Bagratashvili, Russ. J. Phys. Chem. B 12, 1112 (2018).

    Article  CAS  Google Scholar 

  39. D. A. Panchuk, Zh. K. Sadakbaeva, D. V. Bagrov, A. V. Bol’shakova, L. M. Yarysheva, I. B. Meshkov, A. M. Muzafarov, A. L. Volynskii, and N. F. Bakeev, Polymer Sci., Ser. A 53, 303 (2011).

    Article  CAS  Google Scholar 

  40. S. Ibrahimkutty, P. Wagener, T. R. de Santos, D. Karpov, A. Menzel, T. Baumbach, S. Barcikowski, and A. Plech, Sci. Rep. https://doi.org/10.1038/srep16313

  41. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2011).

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-06056 mk) in the part of experiments on the laser ablation of composite silver–gold targets and the Ministry of Education and Science within the works on the state task to the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences in the part of developing the laser methods for the synthesis of nanoparticles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Minaev.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsypina, S.I., Epifanov, E.O., Shubny, A.G. et al. Single-Stage Formation of Film Polymer Composites in Supercritical Colloid Solutions of Nanoparticles Obtained by Laser Ablation. Russ. J. Phys. Chem. B 13, 1235–1244 (2019). https://doi.org/10.1134/S1990793119070285

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793119070285

Keywords:

Navigation