Skip to main content
Log in

Cationic Effect in the Formation of Toxic and Antiviral Properties of Keggin Heteropoly Compounds

  • CHEMICAL PHYSICS OF BIOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The cytotoxicity indices (IC50) of Keggin’s phosphorus-molybdenum heteropoly acids (HPCAs) and their sodium and potassium salts on dog kidney cells (MDSC) are determined. The antiviral activity of these compounds against topical strains of influenza A (H3N2 and H1N1) is revealed. The dependence of the biological properties of polyoxometalates on the elemental composition of their molecules is confirmed. It is shown that when some of the molybdenum atoms are replaced by vanadium atoms, HPCAs and their salts acquire higher cytotoxicities, which increase monotonically as the number of substitutions increases. For the first time, the dependence of the biological activity of HPCAs and their salts on the mass of cations is established and interpreted. The values of semilethal doses (DL50) of these compounds are established in vivo (on outbred white mice). The values of the toxicity index (TI) for aqueous solutions of HPCA sodium and potassium salts are determined in a wide range of concentrations (from 0.05 to 15 μM) on a model of motile cells. It is established that HPCAs and their salts are moderately dangerous toxic substances and have selective antiviral activity, which at low concentrations (less than 15 μM) for influenza A strains is manifested mainly by a decrease in hemagglutination activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. In accordance with the Recommendations of the Pharmacological Committee of the Russian Federation, the antiviral effect of the drug in terms of IA in a cell culture should be at least 2 lg [13].

REFERENCES

  1. A. Catalano, D. Iacopetta, J. Ceramella, D. Scumaci, F. Giuzio, C. Saturnino, S. Aquaro, C. Rosano, and M. S. Sinicropi, Molecules 27, 616 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. J. T. Rhule, C. L. Hill, and D. A. Judd, Chem. Rev. 98, 327 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. M. Aureliano, BioChem. 2, 8 (2022).

    Article  Google Scholar 

  4. M. Aureliano, N. I. Gumerova, G. Sciortino, E. Garribba, C. C. McLauchian, A. Rompel, and D. C. Crans, Coord. Chem. Rev. 454, 214344 (2022).

    Article  CAS  Google Scholar 

  5. A. Bijelic, M. Aureliano, and A. Rompel, Angew. Chem. Int. Ed. Engl. 58, 2980 (2019). https://doi.org/10.1002/anie.201803868

    Article  CAS  PubMed  Google Scholar 

  6. S. S. Soares, F. Henao, M. Aureliano, and C. Cutierrez-Merino, Chem. Res. Toxicol. 21, 607 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. S. S. Soares, C. Gutiérrez-Merino, and M. Aureliano, J. Inorg. Biochem. 101, 789 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. M. Aureliano, C.A. Ohlin, J. Inorg. Biochem. 137, 123 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. R. U. Khabriev, Guidelines for the Experimental (Preclinical) Study of New Pharmacological Substances (Meditsina, Moscow, 2005).

    Google Scholar 

  10. State Standard of the Russian Federation GOST ISO 10993-5-2011. Medical devices. Evaluation of the Biological Effect of Medical Devices. Part 5. Cytotoxicity Testing: In Vitro Methods. Annex A. Mobile Cells (Standartinform, Moscow, 2014).

  11. AT-05 Image Analyzer User Manual. Appendix to the Operating Manual for BMKI 01.00.00.00 RE. (ZAO BMK-INVEST, Moscow, 2009, p. 51.

    Google Scholar 

  12. National Standard of the Russian Federation GOST 12.1.007-76. Occupational Safety Standards System (SSBT). Harmful Substances. Classification and General Safety Requirements (with Amendments No. 1, 2) (Standartinform, Moscow, 2007).

  13. Virology: A Practical Approach, Ed. by B. Mahy (Oxford University Press, 1985).

    Google Scholar 

  14. O. A. Lopatina, I. A. Suetina, M. V. Mezentseva, L. I. Russu, S. A. Kovalevskiy, E. M. Balashov, S. A. Ulasevich, A. I. Kulak, D. A. Kulemin, N. M. Ivashkevich, and F. I. Dalidchik, Russ. J. Phys. Chem. B 14 (1), 81 (2020).

    Article  CAS  Google Scholar 

  15. T. Yamase, H. Fujita, and K. Fukushima, Inorg. Chim. Acta. 151, 15 (1988).

    Article  CAS  Google Scholar 

  16. S. Dianat, A.-K. Bordbar, S. Tangestaninejad, B. Yadollahi, R. Amiri, S.-H. Zarkesh-Esfahani, and P. Habibi, J. Inorg. Biochem. 152, 74 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. W. Qi, B. Zhang, Y. Qi, S. Guo, R. Tian, J. Sun, and M. Zhao, Molecules 22 (9), 1535 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. H. E. Autzen, A. G. Myasnikov, M. G. Campbell, D. Asarnow, D. Julius, and Y. Cheng, Science 359 (6372), 228 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. S. Bajimaya, T. Frankl, T. Hayashi, and T. Takimoto, Virology 510, 234 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. S. A. Kovalevskiy, O. A. Lopatina, E. A. Gushchina, E. I. Isaeva, I. T. Fedyakina, O. V. Baklanova, M. V. Mezentseva, E. M. Balashov, N. M. Ivashkevich, A. I. Kulak, and F. I. Dalidchik, Russ. J. Phys. Chem. B 15 (6), 1019 (2021).

    Article  CAS  Google Scholar 

  21. F. I. Dalidchik, E. M. Balashov, O. V. Baklanova et al., E. A. Gushchina, N. M. Ivashkevich, E. I. Isaeva, S. A. Kovalevsky, A. I. Kulak, O. A. Lopatina, I. T. Fedyakina, and M. V. Mezentseva, Nanobiotechnol. Rep. 17 (2), 193. (2022).

    Article  CAS  Google Scholar 

  22. O. A. Lopatina, F. I. Dalidchik, E. M. Balashov, O. V. Baklanova, S. A. Kovalevsky, A. I. Kulak, M. V. Mezentseva, I. A. Suetina, T. N. Pritchina, and L. I. Russu, “Infectious diseases in the modern world: Evolution, current and future threats,” in Proceedings of the XIV Annual All-Russian Congress on Infectious Diseases named after academician V. I. Pokrovsky, Moscow, March 28–30, 2022 (Medical Marketing Agency, Moscow, 2022), p. 103.

  23. N. Chazal and D. Gerlier, Microbiol. Mol. Biol. Rev. 67 (2), 226 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. L. A. Savintseva, A. A. Avdoshin, and S. K. Ignatov, Russ. J. Phys. Chem. B 16 (3), 445 (2022).

    Article  CAS  Google Scholar 

  25. L. N Shishkisha, M. V. Kozlov, T. V. Konstantinova, A. N. Smirnova, and V. O. Shvydkiy, Russ. J. Phys. Chem. B 17 (1), 141 (2023).

    Article  Google Scholar 

  26. E. V. Tereshkin, K. B. Tereshkina, N. G. Loiko, A. A. Generalova, V. V. Kovalenko, and Yu. F. Krupyansky, Russ. J. Phys. Chem. B 17 (4), 564 (2023).

    Article  Google Scholar 

Download references

Funding

This study was supported by a subsidy from the Ministry of Education and Science allocated by the Federal Research Center for Chemical Physics of the Russian Academy of Sciences to fulfill the state assignment on the topic (theme no. 122040500071-0).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. I. Dalidchik or E. M. Balashov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalidchik, F.I., Lopatina, O.A., Kovalevsky, S.A. et al. Cationic Effect in the Formation of Toxic and Antiviral Properties of Keggin Heteropoly Compounds. Russ. J. Phys. Chem. B 18, 266–274 (2024). https://doi.org/10.1134/S1990793124010238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793124010238

Keywords:

Navigation