Skip to main content
Log in

Density Functional Theory Investigation, Bioactivity, Absorption, Distribution, Metabolism, and Excretion Properties, Docking and in Silico Analysis of New Effective Piperazine Derivatives against Alzheimer’s Disease

  • CHEMICAL PHYSICS OF BIOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Аbstrаct

—In thе prеsеnt work, аt first, dеnsity functionаl thеory cаlculаtions wеrе pеrformеd to invеstigаtе thе molеculаr structurе of thе new piperazinе derivаtives by B3LYP/6-311+G* lеvеl of thеory. А dеtаil of quаntum molеculаr dеscriptors of thе titlе compounds such аs Ionizаtion Potеntiаl (IP) аnd Еlеctron Аffinitiеs (ЕА), Hаrdnеss (η), Softnеss (S), Еlеctronеgаtivity (μ), Еlеctrophilic Indеx (ω), Еlеctron Donаting Powеr (ω), Еlеctron Аccеpting Powеr (ω+) аnd Еnеrgy Gаp (Еg) hаvе bееn cаlculаtеd. Phаrmаcokinеtic propеrtiеs of thе titlе compounds аnd thеir bioаctivity wеrе invеstigаtеd. In thе following, а molеculаr docking study wаs cаrriеd out to scrееn for еffеctivе аvаilаblе compound which mаy work аs а strong inhibitor аgаinst Alzheimer’s Disease. Thе binding еnеrgy bеtwееn protein with ID: 4EY7 аnd titlе orgаnic compounds showеd а excellent binding аffinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 4.
Fig. 5.
Fig. 5.
Fig. 5.

REFERENCES

  1. G. T. Grossberg and J. T. Lake, J. Clin. Psychiatry 59, 3, Suppl. 9 (1998).

  2. M. Wortmann, Wortmann Alzheimer’s Research and Therapy 4, 40 (2012). https://doi.org/10.1186/alzrt143

    Article  PubMed  Google Scholar 

  3. M. P. Janicki, T. Heller, G. B. Seltzer, and J. Hogg, J. Intell. Disabil. Res. 4, 374 (1996).

    Google Scholar 

  4. R. Golden, Minn. Med. 78 (1), 25 (1995).

    CAS  PubMed  Google Scholar 

  5. A. K. Desai abd G. T. Grossberg, Expert Rev, Neurother. 5 (5), 563 (2005). https://doi.org/10.1586/14737175.5.5.56316162080

  6. J. Lindesay, R. Bullock, H. Daniels, et al., Int. J. Clin. Pract. 64, 1198 (2010). https://doi.org/10.1111/j.1742-1241.2010.02417.x

    Article  CAS  PubMed  Google Scholar 

  7. K. S. Shaji, K. Smitha, K. P. Lal, and M. J. Prince, Int. J. Geriatr. Psychiatry. 18, 1 (2003). https://doi.org/10.1002/gps.64912497550

    Article  CAS  PubMed  Google Scholar 

  8. C. Dreux, Ann. Pharm. Fr. 67, 104 (2009). https://doi.org/10.1016/j.pharma.2008.11.00319298894

    Article  CAS  PubMed  Google Scholar 

  9. D. D. Christensen, P. Lin, J. Fam. Pract. 56, 17 (2007).

    Google Scholar 

  10. J. D. Serafini, T. Damianakis, and E. Marziali, Soc. Work Health Care 44, 225 (2007). https://doi.org/10.1300/J010v44n03_0717548277

    Article  PubMed  Google Scholar 

  11. G. Small and R. Bullock, Alzheimers Dement. 7, 177 (2011). https://doi.org/10.1016/j.jalz.2010.03.01621056013

    Article  CAS  PubMed  Google Scholar 

  12. H. M. Fillit, R. S. Doody, K. Binaso, et al., Am. J. Geriatr. Pharmacother. 4, 9 (2006).https://doi.org/10.1016/j.amjopharm.2006.10.00117157793

    Article  Google Scholar 

  13. M. Prince, N. Graham, H. Brodaty, et al., Int. J. Geriatr. Psychiatry 19, 178 (2004). https://doi.org/10.1002/gps.105914758583

    Article  PubMed  Google Scholar 

  14. M. C. Gély-Nargeot, C. Derouesné, and J. Selmès, Psychol. Neuropsychiatr. Vieil. 1, 45 (2003).

    PubMed  Google Scholar 

  15. N. Tajik, M. Tajik, I. Mack, P. Enck, European J. Nutr. 56, 2215 (2017). https://doi.org/10.1007/s00394-017-1379-1

    Article  CAS  Google Scholar 

  16. H. Lu, Z. Tian, Y. Cui, Z. Liu, and X. Ma, Compr. Rev. Food Sci. Food Saf. 19, 3130 (2020). https://doi.org/10.1111/1541-4337.12620

    Article  CAS  PubMed  Google Scholar 

  17. N. K. Nozim, A. M. Alisher, E. N. Kabil, N. R. Rakhmatillo, and R. M. Rahmatjon, J. Pharm. Negat. 13, 1322 (2022).

    Google Scholar 

  18. G. Williamson, Food Funct. 11, 4826 (2020). https://doi.org/10.1039/D0FO01168A

    Article  CAS  PubMed  Google Scholar 

  19. S. Kaviani, S. Shahab, and M. Sheikhi, Phys. E: Low-Dimens. Syst. Nanostruct. 126 (2021). https://doi.org/10.1016/j.physe.2020.114473

  20. L. Ji, P. Jiang, B. Lu, Y. Sheng, X. Wang, Z. Wang, J. Nutr. Biochem. 24, 1911 (2013). https://doi.org/10.1016/j.jnutbio.2013.05.007

    Article  CAS  PubMed  Google Scholar 

  21. S. Shahab, M. Sheikhi, L. Filippovich, et al., Curr. Mol. Med. 19, 419 (2019). https://doi.org/10.2174/156652401966619050910262031072290

    Article  CAS  PubMed  Google Scholar 

  22. M. Sheikhi, S. Shahab, R. Alnajjar, M. Ahmadianarog, and S. Kaviani, Curr. Mol. Med. 19, 91 (2019). https://doi.org/10.2174/156652401966619022611182330813875

    Article  CAS  PubMed  Google Scholar 

  23. C. Hoelzl, S. Knasmüller, K. H. Wagner, O. Neubauer, et al., Mol. Nutr. Food Res. 54, 1722 (2010). https://doi.org/10.1002/mnfr.201000048

    Article  CAS  PubMed  Google Scholar 

  24. L. Sapio, A. Salzillo, M. Illiano, et al., J. Cell. Physiol. 235, 3741 (2020). https://doi.org/10.1002/jcp.29269

    Article  CAS  PubMed  Google Scholar 

  25. M. Sheikhi, S. Shahab, M. Khaleghian, et al., Curr. Mol. Med. 19, 473 (2019).https://doi.org/10.2174/156652401966619050614315231057107

    Article  CAS  PubMed  Google Scholar 

  26. A. Aslan, Y. T. Hussein, O. Gok, et al., Environ. Sci. Pollut. Res. 27, 7526 (2020). https://doi.org/10.1007/s11356-019-07352-8

    Article  CAS  Google Scholar 

  27. N. Wang, Z. Y. Wang, S. L. Mo, et al., Breast Cancer Res. Treat. 134, 943 (2012). https://doi.org/10.1007/s10549-012-1977-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. V. Ahire, A. Kumar, K. P. Mishra, G. Kulkarni, Nutr. Cancer 69, 904 (2017). https://doi.org/10.1080/01635581.2017.1339811

    Article  CAS  PubMed  Google Scholar 

  29. C. Ceci, P. M. Lacal, L. Tentori, et al., Nutr. 11, 1756 (2018). https://doi.org/10.3390/nu10111756

    Article  CAS  Google Scholar 

  30. P. Gupta, T. Mohammad, P. Khan, et al., Biomed. Pharmacother. 118, 109245 (2019). https://doi.org/10.1016/j.biopha.2019.109245

    Article  CAS  PubMed  Google Scholar 

  31. M. Yousuf, A. Shamsi, P. Khan, et al., Int. J. Mol. Sci. 21, 3526 (2020). https://doi.org/10.3390/ijms21103526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. N. Wang, Q. Wang, H. Tang, et al., J. Exp. Clin. Cancer Res. 36, 1 (2017). https://doi.org/10.1186/s13046-017-0635-9

    Article  CAS  Google Scholar 

  33. S. Chang, B. Li, T. Chen, X. He, B. Wu, J. Anal. Chem. 75, 1018 (2020). https://doi.org/10.1134/S1061934820080055

    Article  CAS  Google Scholar 

  34. I. Murakoshi, M. Kaneko, C. Koide, F. Ikegami, Phytochem. 25, 2759 (1986). https://doi.org/10.1016/S0031-9422(00)83736-X

    Article  CAS  Google Scholar 

  35. L.A. Chase, R. J. Roon, L. Wellman, A. J. Beitz, J. F. Koerner, Neurosci. 106, 287 (2001). https://doi.org/10.1016/S0306-4522(01)00278-0

    Article  CAS  Google Scholar 

  36. M. Bitzer and F. Schaeffel, Optom. Vis. Sci. 81, 127 (2004). https://doi.org/10.1097/00006324-200402000-00011

    Article  PubMed  Google Scholar 

  37. J. Rochford, A. P. Sen, I. Rousse, and S. A. Welner, Brain Res. Bull. 41, 313 (1996). https://doi.org/10.1016/S0361-9230(96)00191-8

    Article  CAS  PubMed  Google Scholar 

  38. N. Rasool, A. Akhtar, and W. Hussain, Struct. Chem. 31, 1777 (2020). https://doi.org/10.1007/s11224-020-01536-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. Shahab, M. Sheikhi, and R. Alnajjar, et al., J. Mol. Struct. 1228, 129461 (2020). https://doi.org/10.1016/j.molstruc.2020.129461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. F. E. Agamah, G. K. Mazandu, and R. Hassan, et al., Brief. Bioinform. 21, 1663 (2020). https://doi.org/10.1093/bib/bbz103

    Article  PubMed  Google Scholar 

  41. D. Rognan, Pharmacol. Ther. 175, 47 (2017).https://doi.org/10.1016/j.pharmthera.2017.02.034

    Article  CAS  PubMed  Google Scholar 

  42. M. Sheikhi, S. Shahab, R. Alnajjar, and M. Ahmadianarog, J. Cluster Sci. 30, 83 (2019). https://doi.org/10.1007/s10876-018-1460-9

    Article  CAS  Google Scholar 

  43. S. Siyamak, M. Sheikhi, L. Filippovich, et al., Silicon 10, 2361 (2018). https://doi.org/10.1007/s12633-018-9773-8

    Article  CAS  Google Scholar 

  44. K. Sachdev and M. K. Gupta, J. Biomed. Inf. 93, 103159 (2019). https://doi.org/10.1016/j.jbi.2019.103159

    Article  Google Scholar 

  45. C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Adv. Drug Deliv. Rev. 23, 3 (1997). https://doi.org/10.1016/S0169-409X(96)00423-1

    Article  CAS  Google Scholar 

  46. A. Husain, A. Ahmad, S. A. Khan, et al., Saudi Pharm. J. 24, 104 (2016). https://doi.org/10.1016/j.jsps.2015.02.008

    Article  PubMed  Google Scholar 

  47. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Revision C.01 (Gaussian, Inc., Wallingford, CT, 2010).

    Google Scholar 

  48. T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393, 51 (2004). https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  49. B. J. Lynch and D. G. Truhlar, Theor. Chem. Acc. 111, 335 (2004). https://doi.org/10.1007/s00214-003-0518-3

    Article  CAS  Google Scholar 

  50. S. Shahab and M. Sheikhi, Russ. J. Phys. Chem. B 14, 15 (2020). https://doi.org/10.1134/S1990793120010145

    Article  CAS  Google Scholar 

  51. Y. Konishi, S. Kobayashi, J. Agric. Food Chem. 52, 2518 (2004). https://doi.org/10.1021/jf035407c

    Article  CAS  PubMed  Google Scholar 

  52. R. Dennington, T. Keith, J. Millam, K. Eppinnett, W. L Hovell, and R. Gilliland, GaussView, Version 5.0.9 (Semichem, Inc, Shawnee Mission, KS, USA, 2009).

    Google Scholar 

  53. O. Trott and A. J. Olson, J. Comput. Chem. 31, 455 (2009). https://doi.org/10.1002/jcc.21334

    Article  CAS  Google Scholar 

  54. M. Amati, S. Stoia, and E. J. Baerends, J. Chem., Theory Comput. 16, 443 (2019). https://doi.org/10.1021/acs.jctc.9b00981

    Article  CAS  PubMed  Google Scholar 

  55. M. Sheikhi, S. Shahab, M. Khaleghian, F. H. Hajikolaee, I. Balakhanava, and R. Alnajjar, J. Mol. Struct. 1160, 479 (2018). https://doi.org/10.1016/j.molstruc.2018.01.005

    Article  CAS  Google Scholar 

  56. S. Shahab, M. Sheikhi, L. Filippovich, D. E. Anatol’evich, and H. Yahyaei, J. Mol. Struct. 1137, 335 (2017). https://doi.org/10.1016/j.molstruc.2017.02.056

    Article  CAS  Google Scholar 

  57. S. Shahab, M. Sheikhi, L. Filippovich, et al., Silicon 10, 2385 (2018).

    Article  Google Scholar 

  58. V. Zarotsky, J. J. Sramek, and N. R. Cutler, Am. J. Health Syst. Pharm. 60, 446 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. E. M. Reiman, J. Clin. Psychiatry 67, 1784 (2006).

    Article  PubMed  Google Scholar 

  60. L. M. Bierer, V. Haroutunian, S. Gabriel, et al., J. Neurochem. 64, 749 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. S. V. Lushchekina, A. V. Nemukhin, I. V. Polyakov, et al., Russ. J. Phys. Chem. B 16, 103 (2022). https://doi.org/10.1134/S1990793122010237

    Article  CAS  Google Scholar 

  62. A. Daina, O. Michielin, and V. Zoete, Sci. Rep. 7, 42717 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. A. Daina and V. Zoete, Int. J. Mol. Sci. 20, 4612 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. J. Hastings, G. Owen, A. Dekker, et al., Nucleic Acids Res. 44, D1214 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Z. H. Al-Sawaff, M. A. Basaran, and F. Kandemirli, Russ. J. Phys. Chem. B 16, 579 (2022). https://doi.org/10.1134/S1990793122040030

    Article  CAS  Google Scholar 

  66. X. Miao, S. Zhou, and C. Wang, Russ. J. Phys. Chem. B 16, 804 (2022). https://doi.org/10.1134/S199079312204011X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Almodarresiyeh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahab, S., Almodarresiyeh, H.A., Sheikhi, M. et al. Density Functional Theory Investigation, Bioactivity, Absorption, Distribution, Metabolism, and Excretion Properties, Docking and in Silico Analysis of New Effective Piperazine Derivatives against Alzheimer’s Disease. Russ. J. Phys. Chem. B 17, 725–737 (2023). https://doi.org/10.1134/S1990793123030247

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123030247

Keywords:

Navigation