Skip to main content
Log in

Energy Barrier of Photoinduced Charge Separation in the Reaction Centers of Photosystems I and II

  • ON THE 100th ANNIVERSARY OF THE BIRTH OF ACADEMICIAN V.I. GOLDANSKY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

This paper focuses on the energetics of photoinduced charge separation reactions between closely spaced molecules of chlorophyll (Chl) and pheophytin (Pheo). The reaction centers of photosystems PSI and PSII include three pairs of spectrally similar porphyrin cofactors, whose structure allows the implementation of alternative mechanisms of primary charge separation. A continuum model for the formation of ion-radical pairs in a dielectric environment based on partial charges calculated ab initio is considered. The model describes the experimental variation of the midpoint redox potentials of Chl and Pheo in solutions with different permittivities. Within this model, the formation energy of primary ion-radical pairs is estimated for the alternative mechanisms of charge separation in PSI and PSII discussed in the literature. In the considered approximation in PSII, the primary charge separation between the monomer of Chl (ChlD1) and Pheo (PheoD1) is the only energetically allowed mechanism. The absence of Pheo in the same position in the reaction center of PSI denies the possibility of the Chl monomer in this complex acting as the primary electron donor. Stabilization of the primary ion-radical pair in PSI can occur due to the delocalization of the electron density along the dimer of a special pair of Chl molecules (Р700) and the heterodimer of Chl molecules forming the primary acceptor A0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. E. S. Medvedev, A. I. Kotel’nikov, N. S. Goryachev, et al., Russ. J. Chem. Phys. B 5(2), 308 (2011). https://doi.org/10.1134/S1990793111020217

  2. M. Schenderlein, M. Cetin, J. Barber, et al., Biochim. Biophys. Acta, Bioenerg. 1777 (11), 1400 (2008). https://doi.org/10.1016/j.bbabio.2008.08.008

    Article  CAS  Google Scholar 

  3. M. Gorka, P. Charles, V. Kalendra, et al., iScience 24 (7), 102719 (2021). https://doi.org/10.1016/j.isci.2021.102719

  4. A. Chauvet, N. Dashdorj, J. H. Golbeck, et al., J. Phys. Chem. B 116 (10), 3380 (2012). https://doi.org/10.1021/jp211246a

    Article  CAS  PubMed  Google Scholar 

  5. D. A. Cherepanov, I. V. Shelaev, F. E. Gostev, et al., Photochem. Photobiol. Sci. 20 (9), 1209 (2021). https://doi.org/10.1007/s43630-021-00094-y

    Article  CAS  PubMed  Google Scholar 

  6. V. A. Shuvalov, Biochim. Biophys. Acta, Bioenerg. 430 (1), 113 (1976). https://doi.org/10.1016/0005-2728(76)90227-9

    Article  CAS  Google Scholar 

  7. S. Savikhin, Photosystem I. Advances in Photosynthesis and Respiration, Ed. by J. H. Golbeck (Springer, Dordrecht, 2006), Vol. 24, p. 155. https://doi.org/10.1007/978-1-4020-4256-0_12

    Book  Google Scholar 

  8. I. V. Shelaev, F. E. Gostev, M. D. Mamedov, et al., Biochim. Biophys. Acta, Bioenerg. 1797 (8), 1410 (2010). https://doi.org/10.1016/j.bbabio.2010.02.026

    Article  CAS  Google Scholar 

  9. M. Gorka, A. Baldansuren, A. Malnati, et al., Front. Microbiol. 12, 2776 (2021). https://doi.org/10.3389/fmicb.2021.735666

    Article  Google Scholar 

  10. D. A. Cherepanov, I. V. Shelaev, F. E. Gostev, et al., Biochim. Biophys. Acta, Bioenerg. 1858 (11), 895 (2017). https://doi.org/10.1016/j.bbabio.2017.08.008

    Article  CAS  Google Scholar 

  11. M. Plato, N. Krauß, P. Fromme, and W. Lubitz, Chem. Phys. 294 (3), 483 (2003). https://doi.org/10.1016/S0301-0104(03)00378-1

    Article  CAS  Google Scholar 

  12. D. G. Artiukhin, P. Eschenbach, and J. Neugebauer, J. Phys. Chem. B 124 (24), 4873 (2020). https://doi.org/10.1021/acs.jpcb.0c02827

    Article  CAS  PubMed  Google Scholar 

  13. M. G. Müller, J. Niklas, W. Lubitz, and A. R. Holzwarth, Biophys. J. 85 (6), 3899 (2003). https://doi.org/10.1016/s0006-3495(03)74804-8

    Article  PubMed  PubMed Central  Google Scholar 

  14. E. Molotokaite, W. Remelli, A. P. Casazza, et al., J. Phys. Chem. B 121 (42), 9816 (2017). https://doi.org/10.1021/acs.jpcb.7b07064

    Article  CAS  PubMed  Google Scholar 

  15. V. V. Klimov, S. I. Allakhverdiev, Sh. Demeter, and A. A. Krasnovskii, Dokl. Akad. Nauk SSSR 49, 227 (1979).

    Google Scholar 

  16. T. Tomo, S. I. Allakhverdiev, and M. Mimuro, J. Photochem. Photobiol. B 104 (1–2), 333 (2011). https://doi.org/10.1016/j.jphotobiol.2011.02.017

    Article  CAS  PubMed  Google Scholar 

  17. I. V. Kuvykin, A. V. Vershubskii, and A. N. Tikhonov, Russ. J. Chem. Phys. B 3 (2), 230 (2009). https://doi.org/10.1134/S1990793109020092

  18. V. A. Nadtochenko, I. V. Shelaev, M. D. Mamedov, et al., Biochemistry 79 (3), 197 (2014). https://doi.org/10.1134/S0006297914030043

    Article  CAS  PubMed  Google Scholar 

  19. G. Raszewski, W. Saenger, and T. Renger, Biophys. J. 88 (2), 986 (2005). https://doi.org/10.1529/biophysj.104.050294

    Article  CAS  PubMed  Google Scholar 

  20. V. I. Novoderezhkin, E. Romero, J. P. Dekker, and R. Van Grondelle, Chem. Phys. Chem. 12 (3), 681 (2011). https://doi.org/10.1002/cphc.201000830

    Article  CAS  PubMed  Google Scholar 

  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, and T. Henderson, Gaussian 16. Rev. C. 01 (Gaussian Inc., Wallingford, CT, 2016).

    Google Scholar 

  22. R. G. Parr and Y. Weitao, Density-Functional Theory of Atoms and Molecules (Oxford Academic, New York, 1995). https://doi.org/10.1093/OSO/9780195092769.003.0005

    Book  Google Scholar 

  23. P. Jordan, P. Fromme, H. T. Witt, et al., Nature 411 (6840), 909 (2001). https://doi.org/10.1038/35082000

    Article  CAS  PubMed  Google Scholar 

  24. R. D. Britt and D. A. Marchiori, Science 366 (6463), 305 (2019). https://doi.org/10.1126/science.aaz4522

    Article  CAS  PubMed  Google Scholar 

  25. T. M. Henderson, A. F. Izmaylov, G. Scalmani, and G. E. Scuseria, J. Chem. Phys. 131 (4), 044108 (2009). https://doi.org/10.1063/1.3185673

    Article  CAS  PubMed  Google Scholar 

  26. D. A. Cherepanov, G. E. Milanovsky, A. V. Aibush, and V. A. Nadtochenko, Russ. J. Phys. Chem. B 17 (3), 584. https://doi.org/10.1134/S1990793123030181

  27. T. Lu and F. Chen, J. Comput. Chem. 33 (5), 580 (2012). https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  28. W. Rocchia, E. Alexov, and B. Honig, J. Phys. Chem. B 105 (28), 6507 (2001). https://doi.org/10.1021/jp010454y

    Article  CAS  Google Scholar 

  29. E. Vauthey, Chem. Phys. Chem. 13 (8), 2001 (2012). https://doi.org/10.1002/cphc.201200106

    Article  CAS  PubMed  Google Scholar 

  30. M. Kellogg, A. Akil, D. S. Muthiah Ravinson, et al., Faraday Discuss. 216, 379 (2019). https://doi.org/10.1039/c8fd00201k

    Article  CAS  PubMed  Google Scholar 

  31. L. I. Krishtalik, Biochim. Biophys. Acta, Bioenerg. 1807 (11), 1444 (2011). https://doi.org/10.1016/J.BBABIO.2011.07.002

    Article  CAS  Google Scholar 

  32. S. S. Khokhlova, V. A. Mikhailova, and A. I. Ivanov, Russ. J. Chem. Phys. B 1(5), 443 (2007). https://doi.org/10.1134/S1990793107050028

  33. V. V. Ptushenko, D. A. Cherepanov, L. I. Krishtalik, and A. Y. Semenov, Photosynth. Res. 97 (1), 55 (2008). https://doi.org/10.1007/s11120-008-9309-y

    Article  CAS  PubMed  Google Scholar 

  34. A. Y. Lebedev, M. A. Filatov, A. V. Cheprakov, and S. A. Vinogradov, J. Phys. Chem. A 112 (33), 7723 (2008). https://doi.org/10.1021/jp8043626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. I. V. Sazanovich, V. A. Galievsky, A. Van Hoek, et al., J. Phys. Chem. B 105 (32), 7818 (2001). https://doi.org/10.1021/jp010274o

    Article  CAS  Google Scholar 

  36. B. Röder, M. Buchner, I. Ruckmann, and M. O. Senge, Photochem. Photobiol. Sci. 9 (8), 1152 (2010). https://doi.org/10.1039/c0pp00107d

    Article  CAS  PubMed  Google Scholar 

  37. M. R. Wasielewski, R. L. Smith, and A. G. Kostka, J. Am. Chem. Soc. 102 (23), 358 (1981). https://doi.org/10.1021/JA00543A004/ASSET/JA00-543A004.FP.PNG_V03

    Article  Google Scholar 

  38. M. Kobayashi, S. Ohashi, K. Iwamoto, et al., Biochim. Biophys. Acta, Bioenerg. 1767 (6), 596 (2007). https://doi.org/10.1016/j.bbabio.2007.02.015

    Article  CAS  Google Scholar 

  39. T. Saji and A. J. Bard, J. Am. Chem. Soc. 99 (7), 2235 (1977). https://doi.org/10.1021/ja00449a034

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by grant no. 22-24-00705 of the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Cherepanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherepanov, D.A., Milanovsky, G.E., Nadtochenko, V.A. et al. Energy Barrier of Photoinduced Charge Separation in the Reaction Centers of Photosystems I and II. Russ. J. Phys. Chem. B 17, 594–599 (2023). https://doi.org/10.1134/S1990793123030193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123030193

Keywords:

Navigation