Skip to main content
Log in

Dipole Moment of the S0 → S1 Chlorophyll a Transition in Solvents with a Varied Refraction Index

  • ON THE 100th ANNIVERSARY OF THE BIRTH OF ACADEMICIAN V.I. GOLDANSKY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The dependence of the dipole moment of chlorophyll a’s (Chl) S0 → S1 transition on the value of the solvent refractive index n is calculated. The interactions between the electric field of a light wave, the electronic transition of the pigment to an excited state, and the dielectric polarization of an optical medium are analyzed. The reactive changes in Chl’s transition dipole moment in solvents with different refractive index values are calculated in the time-dependent density functional theory (TD–DFT) using the LC-ωPBE hybrid functional and the polarizable continuum model. The ab initio calculations are approximated by the Onsager reactive field model with an effective polarizability of Chl equal to 21 Å3. The model quantitatively describes the experimental dependence of Chl’s extinction coefficient in solvents with a refractive index of 1.3 < n < 1.7. In a protein environment with a refractive index of n = 1.4, the transition dipole moment of Chl is 5.5 D. For this environment, the distributions of the electrostatic potential in the ground and excited states of Chl are calculated; the ab initio calculations are approximated by a set of partial transient charges located on the heavy atoms of the π-conjugated system of the Chl molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. T. Mirkovic, E. E. Ostroumov, J. M. Anna, et al., Chem. Rev. 117 (2), 249 (2017). https://doi.org/10.1021/acs.chemrev.6b00002

    Article  CAS  PubMed  Google Scholar 

  2. G. Zucchelli, R. C. Jennings, F. M. Garlaschi, et al., Biophys. J. 82 (1), 378 (2002). https://doi.org/10.1016/S0006-3495(02)75402-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M. E. Madjet, A. Abdurahman, and T. Renger, J. Phys. Chem. B 110 (34), 17268 (2006). https://doi.org/10.1021/jp0615398

    Article  CAS  PubMed  Google Scholar 

  4. G. R. Seely and R. G. Jensen, Spectrochim. Acta 21 (10), 1835 (1965). https://doi.org/10.1016/0371-1951(65)80095-9

    Article  CAS  Google Scholar 

  5. C. Houssier and K. Sauer, J. Am. Chem. Soc. 92 (4), 779 (1970). https://doi.org/10.1021/ja00707a007

    Article  CAS  Google Scholar 

  6. K. Colbow, Biochim. Biophys. Acta, Bioenerg. 314 (3), 320 (1973). https://doi.org/10.1016/0005-2728(73)90116-3

    Article  CAS  Google Scholar 

  7. L. L. Shipman, T. M. Cotton, J. R. Norris, and J. J. Katz, J. Am. Chem. Soc. 98 (25), 8222 (1976). https://doi.org/10.1021/ja00441a056

    Article  CAS  PubMed  Google Scholar 

  8. M. Linke, A. Lauer, T. Von Haimberger, et al., J. Am. Chem. Soc. 130 (45), 14904 (2008). https://doi.org/10.1021/ja804096s

    Article  PubMed  Google Scholar 

  9. L. L. Shipman, Photochem. Photobiol. 26 (3), 287 (1977). https://doi.org/10.1111/j.1751-1097.1977.tb07486.x

    Article  CAS  Google Scholar 

  10. R. S. Knox, Photochem. Photobiol. 77 (5), 492 (2003). https://doi.org/10.1562/0031-8655(2003)0770492-daosoc2.0.co2

    Article  CAS  PubMed  Google Scholar 

  11. M. B. Oviedo and C. G. Sanchez, J. Phys. Chem. A 115 (44), 12280 (2011). https://doi.org/10.1021/jp203826q

    Article  CAS  PubMed  Google Scholar 

  12. D. Khokhlov and A. Belov, Biophys. Chem. 246, 16 (2019). https://doi.org/10.1016/j.bpc.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  13. R. R. Birge, M. J. Sullivan, and B. E. Kohler, J. Am. Chem. Soc. 98 (2), 358 (1976). https://doi.org/10.1021/ja00418a007

    Article  CAS  PubMed  Google Scholar 

  14. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, and T. Henderson, Gaussian 16. Rev. C. 01 (Gaussian Inc., Wallingford CT, 2016).

    Google Scholar 

  15. T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393 (1–3), 51 (2004). https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  16. T. M. Henderson, A. F. Izmaylov, G. Scalmani, and G. E. Scuseria, J. Chem. Phys. 131 (4), 044108 (2009). https://doi.org/10.1063/1.3185673

    Article  CAS  PubMed  Google Scholar 

  17. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105 (8), 2999 (2005). https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  18. A. V. Marenich, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B 113 (18), 6378 (2009). https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  19. T. Lu and F. Chen, J. Comput. Chem. 33 (5), 580 (2012). https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  20. D. A. Cherepanov, G. E. Milanovskii, V. A. Nadtochenko, and A. Yu. Semenov, Russ. J. Phys. Chem. B 17 (3), 594. https://doi.org/10.1134/S1990793123030193

  21. N. Q. Chako, J. Chem. Phys. 2 (10), 644 (1934). https://doi.org/10.1063/1.1749368

    Article  CAS  Google Scholar 

  22. H. A. Lorentz, The Theory of Electrons, 2nd ed. (Dover, Leipzig, 1952).

    Google Scholar 

  23. L. Onsagbr, J. Am. Chem. Soc. 58 (8), 1486 (1936). https://doi.org/10.1021/ja01299a050

    Article  Google Scholar 

  24. H. Fröhlich, Theory of Dielectrics Dielectric Constant and Dielectric Loss (Clarendon Press, Oxford, 1949).

    Google Scholar 

  25. C. J. F. Böttcher, O. C. van Belle, P. Bordewijk, and A. Rip, Theory of Electric Polarization, 2nd ed., Vol. 1: Dielectrics in Static Fields (Elsevier Scientific Pub., Amsterdam, 1974).

  26. R. S. Mulliken and C. A. Rieke, Rep. Prog. Phys. 8 (1), 231 (1941). https://doi.org/10.1088/0034-4885/8/1/312

    Article  CAS  Google Scholar 

  27. L. W. Pickett, E. Paddock, and E. Sackter, J. Am. Chem. Soc. 63 (4), 1073 (1941). https://doi.org/10.1021/JA01849A051/ASSET/JA01849-A051.FP.PNG_V03

    Article  CAS  Google Scholar 

  28. L. E. Jacobs and J. R. Platt, J. Chem. Phys. 16 (12), 1137 (1948). https://doi.org/10.1063/1.1746745

    Article  CAS  Google Scholar 

  29. B. S. Neporent and N. G. Bakhshiev, Opt. Spectrosc. 5 (634), 1954 (1958).

    Google Scholar 

  30. W. Moffitt and A. Moscownz, J. Chem. Phys. 30 (3), 648 (1959). https://doi.org/10.1063/1.1730025

    Article  CAS  Google Scholar 

  31. N. G. Bakhshiev, O. P. Girin, and V. S. Libov, Opt. Spectrosc. 14, 255 (1963).

    Google Scholar 

  32. L. Lorenz, Ann. Phys. 247 (9), 70 (1880). https://doi.org/10.1002/andp.18802470905

    Article  Google Scholar 

  33. P. Pacak, J. Solution Chem. 16 (1), 71 (1987). https://doi.org/10.1007/BF00647016

    Article  CAS  Google Scholar 

  34. N. G. Bakhshiev, Opt. Spectrosc. 5 (646), 1954 (1958).

    Google Scholar 

  35. J. Schuyer, Recl. des Trav. Chim. des Pays-Bas. 72 (11), 933 (1953). https://doi.org/10.1002/recl.19530721104

    Article  CAS  Google Scholar 

  36. N. G. Bakhshiev, O. P. Girin, and V. S. Libov, Opt. Spectrosc. 14, 395 (1963).

    Google Scholar 

  37. W. Liptay, Z. Naturforschg. A 21 (10), 1605 (1966). https://doi.org/10.1515/zna-1966-1010

  38. O. E. Weigang, J. Chem. Phys. 41 (5), 1435 (1964). https://doi.org/10.1063/1.1726086

    Article  CAS  Google Scholar 

  39. S. S. Khokhlova, V. A. Mikhailova, and A. I. Ivanov, Russ. J. Phys. Chem. B 1, 443 (2007). https://doi.org/10.1134/S1990793107050028

  40. A. Karakas, Y. Ceylan, M. Karakaya, et al., Open Chem. 16 (1), 1242 (2018). https://doi.org/10.1515/chem-2018-0134

    Article  CAS  Google Scholar 

  41. R. S. Knox and H. van Amerongen, J. Phys. Chem. B 106 (20), 5289. https://doi.org/10.1021/jp013927+

  42. R. S. Knox and B. Q. Spring, Photochem. Photobiol. 77 (5), 497 (2003). https://doi.org/10.1562/0031-8655(2003)0770497-dsitc2.0.co2

    Article  CAS  PubMed  Google Scholar 

  43. J. Adolphs, F. Müh, M. E. A. Madjet, et al., J. Am. Chem. Soc. 132 (10), 3331 (2010). https://doi.org/10.1021/ja9072222

    Article  CAS  PubMed  Google Scholar 

  44. V. I. Novoderezhkin, M. A. Palacios, H. Van Amerongen, and R. Van Grondelle, J. Phys. Chem. B 109 (20), 10493 (2005). https://doi.org/10.1021/jp044082f

    Article  CAS  PubMed  Google Scholar 

  45. J. Adolphs, F. Muh, M. E. A. Madjet, and T. Renger, Photosynth. Res. 95 (2–3), 197 (2008). https://doi.org/10.1007/s11120-007-9248-z

    Article  CAS  PubMed  Google Scholar 

  46. S. Krawczyk, Biochim. Biophys. Acta, Bioenerg. 1056 (1), 64 (1991). https://doi.org/10.1016/S0005-2728(05)80073-8

    Article  CAS  Google Scholar 

  47. R. B. Altmann, D. Haarer, and I. Renge, Chem. Phys. Lett. 216 (3–6), 281 (1993). https://doi.org/10.1016/0009-2614(93)90095-I

    Article  CAS  Google Scholar 

  48. S. S. Khokhlova, V. A. Mikhailova, and A. I. Ivanov, Russ. J. Phys. Chem. A 82, 1024 (2008). https://doi.org/10.1134/S0036024408060290

  49. H. J. Van Manen, P. Verkuijlen, P. Wittendorp, et al., Biophys. J. 94 (8), L67 (2008). https://doi.org/10.1529/biophysj.107.127837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. J. Vörös, Biophys. J. 87 (1), 553 (2004). https://doi.org/10.1529/biophysj.103.030072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. S. Zölls, M. Gregoritza, R. Tantipolphan, et al., J. Pharm. Sci. 102 (5), 1434 (2013). https://doi.org/10.1002/jps.23479

    Article  CAS  PubMed  Google Scholar 

  52. M. Byrdin, P. Jordan, N. Krauss, et al., Biophys. J. 83 (1), 433 (2002). https://doi.org/10.1016/S0006-3495(02)75181-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. M. Yang, A. Damjanović, H. M. Vaswani, and G. R. Fleming, Biophys. J. 85 (1), 140 (2003). https://doi.org/10.1016/S0006-3495(03)74461-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. P. Akhtar, I. Caspy, P. J. Nowakowski, et al., J. Am. Chem. Soc. 143 (36), 14601 (2021). https://doi.org/10.1021/jacs.1c05010

    Article  CAS  PubMed  Google Scholar 

  55. A. Kimura, H. Kitoh-Nishioka, T. Aota, et al., J. Phys. Chem. B 126 (22), 4009. https://doi.org/10.1021/acs.jpcb.2c00869

  56. K. D. Philipson, TsaiS. Cheng, and K. Sauer, J. Phys. Chem. 75 (10), 1440 (1971). https://doi.org/10.1021/J100680A013/ASSET/J100-680A013.FP.PNG_V03

    Article  Google Scholar 

Download references

Funding

This study was supported by grant no. 22-24-00705 of the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Cherepanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherepanov, D.A., Milanovsky, G.E., Aybush, A.V. et al. Dipole Moment of the S0 → S1 Chlorophyll a Transition in Solvents with a Varied Refraction Index. Russ. J. Phys. Chem. B 17, 584–593 (2023). https://doi.org/10.1134/S1990793123030181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123030181

Keywords:

Navigation