Skip to main content
Log in

Reaction Mechanism of Multistage N2O5 Uptake on Methane Flame Soot

  • CHEMICAL PHYSICS OF ATMOSPHERIC PHENOMENA
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The uptake of N2O5 on a methane soot coating at T = 255 and 298 K in the range of [N2O5] = 1.3 × 1012–3.3 × 1013 cm−3 is studied using a flow reactor with a movable insert and mass spectrometric detection. A series of dependences of the uptake coefficient on the exposure time of the coating to the reagent gas at the given concentrations are obtained. A multistage uptake mechanism is proposed in the framework of the Langmuir conception of adsorption, which explains the complex time dependence of the uptake coefficient and the shape of its dependence on the concentration. Based on the proposed mechanism, a number of elementary parameters are obtained from an analytical description of the experimental data, which make it possible to model the uptake coefficient at arbitrary N2O5 concentrations and temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. W. L. Chang, P. V. Bhave, S. S. Brown, et al., Aerosol. Sci. Technol. 45, 665 (2011). https://doi.org/10.1080/02786826.2010.551672

    Article  CAS  Google Scholar 

  2. N. L. Wagner, T. P. Riedel, C. J. Young, et al., J. Geophys. Res. D 118, 9331 (2013). https://doi.org/10.1002/jgrd.50653

    Article  CAS  Google Scholar 

  3. R. Wang, S. Tao, H. Shen, et al., Environ. Sci. Technol. 48, 6780 (2014). https://doi.org/10.1021/es5021422

    Article  CAS  Google Scholar 

  4. A. Berner, S. Sidla, Z. Galambos, et al., J. Geophys. Res. Atmos. 101, 19559 (1996). https://doi.org/10.1029/95JD03425

    Article  CAS  Google Scholar 

  5. K. Pohl, M. Cantwell, P. Herckes, and R. Lohmann, Atmos. Chem. Phys. 14, 7431 (2014). https://doi.org/10.5194/acp-14-7431-2014,2014

    Article  Google Scholar 

  6. S. P. Sander, J. Abbatt, R. Barker, et al., JPL Publ. 10-6, No. 17 (2011). http://jpldataeval.jpl.nasa.gov.

  7. T. P. Riedel, T. H. Bertram, O. S. Ryder, et al., Atmos. Chem. Phys. 12, 2959 (2012). https://doi.org/10.5194/acp-12-2959-2012,2012

    Article  CAS  Google Scholar 

  8. L. Brower, M. J. Rossi, and D. M. Golden, J. Phys. Chem. 90, 4599 (1986). https://doi.org/10.1021/j10041a025

    Article  Google Scholar 

  9. C. A. Longfellow, A. R. Ravishankara, and D. R. Hanson, J. Geophys. Res. Atmos. 105, 24345 (2000). https://doi.org/10.1029/2000JD900297

    Article  CAS  Google Scholar 

  10. H. Saathoff, K.-H. Naumann, N. Riemer, et al., Geophys. Res. Lett. 28, 1957 (2001). https://doi.org/10.1029/2000GL012619

    Article  CAS  Google Scholar 

  11. F. Karagulian and M. J. Rossi, J. Phys. Chem. A 111, 1914 (2007). https://doi.org/10.1021/jp0670891

    Article  CAS  Google Scholar 

  12. V. V. Zelenov, E. V. Aparina, S. A. Kashtanov, and E. V. Shardakova, Russ. J. Phys. Chem. B 10, 172 (2016). https://doi.org/10.1134/S199079311601022X

    Article  CAS  Google Scholar 

  13. M. Ammann, U. Pöschl, and Y. Rudich, Phys. Chem. Chem. Phys. 5, 351 (2003). https://doi.org/10.1039/b208708a

    Article  CAS  Google Scholar 

  14. M. Ammann and U. Pöschl, Atmos. Chem. Phys. 7, 6025 (2007). www.atmos-chem-phys.net/7/6025/2007/.

    Article  CAS  Google Scholar 

  15. U. Pöschl, Y. Rudich, and M. Ammann, Atmos. Chem. Phys. 7, 5989 (2007). www.atmos-chem-phys.net/ 7/5989/2007/.

    Article  Google Scholar 

  16. T. Berkemeier, M. Ammann, U. K. Krieger, et al., Atmos. Chem. Phys. 17, 8021 (2017). https://doi.org/10.5194/acp-17-8021-2017

    Article  CAS  Google Scholar 

  17. S. O. Travin, Yu. I. Skurlatov, and A. V. Roshchin, Russ. J. Phys. Chem. B 14, 86 (2020). https://doi.org/10.1134/S1990793120010315

    Article  CAS  Google Scholar 

  18. V. V. Zelenov and E. V. Aparina, Russ. J. Phys. Chem. B 15, 547 (2021). https://doi.org/10.1134/S1990793121030143

    Article  CAS  Google Scholar 

  19. S. O. Travin, O. B. Gromov, D. V. Utrobin, and A. V. Roshchin, Russ. J. Phys. Chem. B 13, 975 (2019). https://doi.org/10.1134/S1990793119060113

    Article  CAS  Google Scholar 

  20. V. V. Zelenov, E. V. Aparina, S. A. Kashtanov, and E. V. Shardakova, Russ. J. Phys. Chem. B 9, 327 (2015). https://doi.org/10.1134/S1990793115020141

    Article  CAS  Google Scholar 

  21. D. G. Aubin and J. P. D. Abbatt, J. Phys. Chem. 111, 6263 (2007). https://doi.org/10.1021/jp068884h

    Article  CAS  Google Scholar 

  22. S. Lelievre, Yu. Bedjanian, G. Laverdet, and G. le Bras, J. Phys. Chem. A 108, 10807 (2004). https://doi.org/10.1021/jp0469970

    Article  CAS  Google Scholar 

  23. P. A. Tesner and S. V. Shurupov, Combust. Sci. Technol. 105, 147 (1995). https://doi.org/10.1080/00102209508907744

    Article  CAS  Google Scholar 

  24. A. I. Efimov, L. P. Belorukova, I. V. Vasil’kova, and V. P. Chechev, Properties of Inorganic Compounds, The Handbook (Khimiya, Leningrad, 1983) [in Russian].

    Google Scholar 

  25. Yu. M. Gershenzon, V. M. Grigorieva, A. V. Ivanov, and R. G. Remorov, Faraday Discuss. 100, 83 (1995).

    Article  CAS  Google Scholar 

  26. K. J. Laidler, Chemical Kinetics, 2nd ed. (McGraw-Hill, New York, 1965).

    Google Scholar 

  27. T. Berkemeier, A. J. Huisman, M. Ammann, et al., Atmos. Chem. Phys. 13, 6663 (2013). https://doi.org/10.5194/acp-13-6663-2013

    Article  CAS  Google Scholar 

  28. T. C. Bond, D. G. Streets, K. F. Yarber, et al., J. Geophys. Res. 109, D14203 (2004). https://doi.org/10.1029/2003JD003697

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by state task FFZE-2022-0008 (registration number 1021051302551-2-1.3.1; 1.4.7; 1.6.19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zelenov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenov, V.V., Aparina, E.V. Reaction Mechanism of Multistage N2O5 Uptake on Methane Flame Soot. Russ. J. Phys. Chem. B 16, 1182–1190 (2022). https://doi.org/10.1134/S1990793122060239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122060239

Keywords:

Navigation