Skip to main content
Log in

Initiation of Stable Detonation Combustion of Kerosene Vapors behind an Oblique Shock Wave in a Rarefied Atmosphere

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A family of axisymmetric Laval nozzles with a central cylindrical part is considered. The nozzle diffuser with relatively small dimensions ensures stable detonation combustion of kerosene vapor behind an inclined shock front that forms before entering the combustion chamber without auxiliary initiating structures and additional energy supply. Modeling is carried out based on the two-dimensional unsteady Euler equations of motion for axisymmetric flows of a multicomponent gas and a simplified kinetic scheme of chemical transformations. The calculations are performed using a modified numerical scheme by S.K. Godunov of the second order of accuracy in spatial variables. It is shown that effective detonation combustion occurs on the impact of the initiating shock front on the wall of the combustion chamber in the immediate vicinity of the corner point of conjugation with the diffuser. The parameters of a number of nozzles are determined, in which the detonation combustion of kerosene vapor provides high power characteristics with an efficiency of more than 40% in atmospheric air at an altitude of about 40 km at a flight Mach number of M0 = 9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Ya. B. Zel’dovich, Zh. Tekh. Fiz. 10, 1453 (1940).

    Google Scholar 

  2. Yu. V. Tunik and V. O. Mayorov, Acta Astronaut. 194, 488 (2022). https://doi.org/10.1016/j.actaastro.2021.09.038

    Article  CAS  Google Scholar 

  3. G. Wang, W. Liu, S. Liu, H. Zhang, H. Peng, and Y. Zhou, Acta Astronaut. 189, 722 (2021).

    Article  CAS  Google Scholar 

  4. S. M. Frolov, V. S. Aksenov, and V. S. Ivanov, Russ. J. Phys. Chem. B 5, 664 (2011).

    Article  CAS  Google Scholar 

  5. N. N. Smirnov, V. F. Nikitin, L. I. Stamov, E. V. Mikhalchenko, and V. V. Tyurenkova, Acta Astronaut. 163, 168 (2019).

    Article  CAS  Google Scholar 

  6. Yu. V. Tunik, G. Ya. Gerasimov, and V. Yu. Levashov, Russ. J. Phys. Chem. B 15, 801 (2021).

    Article  CAS  Google Scholar 

  7. Yu. V. Tunik, G. Ya. Gerasimov, V. Yu. Levashov, and N. A. Slavinskaya, Combust. Explos., Shock Waves 56, 344 (2020).

    Article  Google Scholar 

  8. Yu. V. Tunik, G. Ya. Gerasimov, V. Yu. Levashov, and M. S. Assad, High Temp. 59 (2021, in press).

  9. X. Shi, H. Xie, L. Zhou, and Y. Zhang, Acta Astronaut. 190, 342 (2022).

    Article  CAS  Google Scholar 

  10. G. Xiang, H. Li, G. Zhang, X. Xie, and Y. Zhang, Int. J. Hydrogen Energy 46, 17435 (2021).

    Article  CAS  Google Scholar 

  11. Q. Qin and X. Zhang, Int. J. Hydrogen Energy 44, 17004 (2019).

    Article  CAS  Google Scholar 

  12. G. G. Chernyi, Gas Dynamics (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  13. M. A. Zubin and Yu. V. Tunik, Fluid Dyn. 49, 557 (2014).

    Article  Google Scholar 

  14. M. A. Zubin and Yu. V. Tunik, Fiz.-Khim. Kinet. Gaz. Din. 16 (3), 1 (2015).

    Google Scholar 

  15. Yu. V. Tunik, Comput. Math. Math. Phys. 58, 1573 (2018).

    Article  Google Scholar 

  16. Yu. V. Tunik, Fiz.-Khim. Kinet. Gaz. Din. 19 (1), 1 (2018).

    Google Scholar 

  17. V. E. Kozlov, N. S. Titova, and S. A. Torokhov, Russ. J. Phys. Chem. B 14, 395 (2020).

    Article  CAS  Google Scholar 

  18. N. A. Slavinskaya, AIAA Paper No. 2008-992.

  19. Y. Yan, Y. Liu, D. Di, C. Dai, and J. Li, Energy Fuels 30, 10847 (2016).

    Article  CAS  Google Scholar 

  20. K. L. Tay, W. Yang, B. Mohan, et al., Energy Convers. Manage. 108, 446 (2016).

    Article  CAS  Google Scholar 

  21. A. Burcat and B. Ruscic, Tech. Rep. No. ANL-05/20, TAE 960 (Argonne Natl. Labor., Lemont, IL, USA, 2005).

  22. Y. Chang, M. Jia, Y. Liu, Y. Li, and M. Xie, Combust. Flame 160, 1315 (2013).

    Article  CAS  Google Scholar 

  23. A. J. Dean, O. G. Penyazkov, K. L. Sevruk, and B. Varatharajan, Proc. Combust. Inst. 31, 2481 (2007).

    Article  Google Scholar 

  24. H. Wang and M. A. Oehlschlaeger, Fuel 98, 249 (2012).

    Article  CAS  Google Scholar 

  25. N. P. Isakova, A. N. Kraiko, K. S. P’yankov, and N. I. Tillyaeva, J. Appl. Math. Mech. 76, 451 (2012).

    Article  Google Scholar 

  26. Yu. V. Tunik, Fluid Dyn. 49, 688 (2014).

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (grant no. 20-51-00003 (Bel_a)) and as part of a state task of the Ministry of Science and Higher Education of the Russian Federation “Experimental and Theoretical Study of Kinetic Processes in Gases” (registration number AAAA-A19 -119012990112-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Tunik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunik, Y.V., Gerasimov, G.Y., Levashov, V.Y. et al. Initiation of Stable Detonation Combustion of Kerosene Vapors behind an Oblique Shock Wave in a Rarefied Atmosphere. Russ. J. Phys. Chem. B 16, 699–705 (2022). https://doi.org/10.1134/S1990793122040327

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122040327

Keywords:

Navigation