Skip to main content
Log in

Comparative Analysis of the Detonation Combustion of Kerosene and Gasoline Vapors in a Laval Nozzle

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The possibility of stabilizing the detonation combustion of kerosene and gasoline vapors in a supersonic air flow entering an axisymmetric convergent–divergent nozzle with a central body under atmospheric conditions at an altitude of 16 km is studied numerically. The central body provides direct initiation of detonation due to the thermal and kinetic energy of the incident flow. The mathematical model is based on two-dimensional unsteady Euler equations for an axisymmetric flow of a multicomponent reacting gas and reduced kinetic models of combustion of flammable mixtures. The calculations use a modification of the numerical scheme of S.K. Godunov of the second order of accuracy in spatial variables. The central body of the cylinder–cone (CC) and cone–cylinder–cone (CCC) types is considered. The possibility of stabilizing the detonation combustion of kerosene at the oncoming flow of Mach numbers of M = 7 and 9 with thrust generation is shown. In the case of gasoline, only a small part of the mixture burns in the detonation mode behind the detached shock wave in front of the end wall of the central body. The thrust obtained in gasoline vapors does not compensate the aerodynamic resistance of the nozzle and the central body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. A. Zhuravskaya and V. A. Levin, Fluid Dyn. 50, 283 (2015).

    Article  CAS  Google Scholar 

  2. V. A. Levin and T. A. Zhuravskaya, Tr. Mat. Inst. im. V. A. Steklova RAN 300, 123 (2018).

    Google Scholar 

  3. Yu. V. Tunik, Fluid Dyn. 45, 264 (2010).

    Article  CAS  Google Scholar 

  4. M. A. Zubin and Yu. V. Tunik, Fiz.-Khim. Kinet. Gaz. Dinam. 16 (3), 1 (2015).

    Google Scholar 

  5. Yu. V. Tunik, J. Appl. Mech. Tech. Phys. 57, 963 (2016).

    Article  Google Scholar 

  6. Yu. V. Tunik, Int. J. Hydrogen Energy 43, 19260 (2018).

    Article  CAS  Google Scholar 

  7. Yu. V. Tunik, Fiz.-Khim. Kinet. Gaz. Dinam. 20 (1), 1 (2019).

    Google Scholar 

  8. W. Fan, C. Yan, X. Huang, Q. Zhang, and L. Zheng, Combust. Flame 133, 441 (2003).

    Article  CAS  Google Scholar 

  9. S. M. Frolov, V. S. Aksenov, V. S. Ivanov, S. N. Medvedev, V. A. Smetanyuk, K. A. Avdeev, and F. S. Frolov, Russ. J. Phys. Chem. B 5, 625 (2011).

    Article  CAS  Google Scholar 

  10. J. Kindracki, Shock Waves 24, 603 (2014).

    Article  Google Scholar 

  11. Y. Tian, X. Zeng, S. Yang, et al., Aerospase Sci. Technol. 84, 510 (2019).

    Article  Google Scholar 

  12. Z. Wang, Y. Zhang, J. Huang, et al., Appl. Therm. Eng. 93, 1 (2016).

    Article  Google Scholar 

  13. W. D. Bachalo, in Proceedings of the 25th International Symposium on Combustion (The Combust. Inst., Pittsburgh, 1994), Vol. 25, p. 333.

  14. Z. Ren, B. Wang, G. Xiang, and L. Zheng, Proc. Combust. Inst. 37, 3627 (2019).

    Article  CAS  Google Scholar 

  15. G. Ya. Gerasimov and S. A. Losev, Inzh.-Fiz. Zh. 78 (6), 14 (2005).

    Google Scholar 

  16. A. V. Fedorov and D. A. Tropin, Combust. Explos., Shock Waves 48, 298 (2012).

    Google Scholar 

  17. B. Franzelli, E. Riber, M. Sanjosé, and T. Poinsot, Combust. Flame 157, 1364 (2010).

    Article  CAS  Google Scholar 

  18. Yu. V. Tunik and G. Ya. Gerasimov, Fiz.-Khim. Kinet. Gaz. Dinam. 19 (2), 1 (2018).

    Google Scholar 

  19. L. Maurice and T. Edwards, in Scramjet Propulsion, Eds. by E. T. Curran and S. N. B. Murthy, Prog. Astronaut. Aeronaut. 189, 757 (2000).

  20. P. Dagaut and M. Cathonnet, Prog. Energy Combust. Sci. 32, 48 (2006).

    Article  CAS  Google Scholar 

  21. S. Granata, T. Faravelli, and E. Ranzi, Combust. Flame 132, 533 (2003).

    Article  CAS  Google Scholar 

  22. E. Ranzi, A. Frassoldati, A. Stagni, et al., Int. J. Chem. Kinet. 46, 512 (2014).

    Article  CAS  Google Scholar 

  23. V. E. Kozlov, N. S. Titova, and S. A. Torokhov, Russ. J. Phys. Chem. B 14, 395 (2020).

    Article  CAS  Google Scholar 

  24. N. S. Titova, S. A. Torokhov, and A. M. Starik, Combust. Explos., Shock Waves 47, 129 (2011).

    Article  Google Scholar 

  25. H. J. Curran, P. Gaffuri, W. J. Pitz, and C. K. Westbrook, Combust. Flame 129, 253 (2002).

    Article  CAS  Google Scholar 

  26. L. Cai and H. Pitsch, Combust. Flame 162, 1623 (2015).

    Article  CAS  Google Scholar 

  27. G. Kukkadapu, K. Kumar, C.-J. Sung, M. Mehl, and W. J. Pitz, Combust. Flame 159, 3066 (2012).

    Article  CAS  Google Scholar 

  28. B. M. Gauthier, D. F. Davidson, and R. K. Hanson, Combust. Flame 139, 300 (2004).

    Article  CAS  Google Scholar 

  29. A. M. Tereza and E. K. Anderzhanov, Russ. J. Phys. Chem. B 13, 626 (2019).

    Article  CAS  Google Scholar 

  30. C. K. Westbrook, W. J. Pitz, O. Herbinet, H. J. Curran, and E. J. Silke, Combust. Flame 156, 181 (2009).

    Article  CAS  Google Scholar 

  31. M. Mehl, W. J. Pitz, C. K. Westbrook, and H. J. Curran, Proc. Combust. Inst. 33, 193 (2011).

    Article  CAS  Google Scholar 

  32. P. Dagaut, F. Karsenty, G. Dayma, et al., Combust. Flame 161, 835 (2014).

    Article  CAS  Google Scholar 

  33. N. A. Slavinskaya, AIAA Paper No. 2008-992.

  34. Y. Chang, M. Jia, Y. Liu, Y. Li, and M. Xie, Combust. Flame 160, 1315 (2013).

    Article  CAS  Google Scholar 

  35. N. Zettervall, C. Fureby, and E. J. K. Nilsson, Energy Fuels 30, 9801 (2016).

    Article  CAS  Google Scholar 

  36. K. L. Tay, W. Yang, B. Mohan, et al., Energy Convers. Manage. 108, 446 (2016).

    Article  CAS  Google Scholar 

  37. Y. Yan, Y. Liu, D. Di, C. Dai, and J. Li, Energy Fuels 30, 10847 (2016).

    Article  CAS  Google Scholar 

  38. W. Yao, Y. Yuan, X. Li, et al., J. Propuls. Power 34, 772 (2018).

    Article  CAS  Google Scholar 

  39. M. Jia and M. Xie, Fuel 85, 2593 (2006).

    Article  CAS  Google Scholar 

  40. K. Lee, Y. Kim, and K. Min, Combust. Theory Model. 15, 107 (2011).

    Article  CAS  Google Scholar 

  41. F. Maroteaux, Combust. Flame 186, 1 (2017).

    Article  CAS  Google Scholar 

  42. Y. Li, A. Alfazazi, B. Mohan, et al., Fuel 247, 164 (2019).

    Article  CAS  Google Scholar 

  43. U. Pfahl, K. Fieweger, and G. Adomeit, in Proceedings of the 26th International Symposium on Combustion (The Combust. Inst., Pittsburgh, 1996), p. 781.

  44. A. J. Dean, O. G. Penyazkov, K. L. Sevruk, and B. Varatharajan, Proc. Combust. Inst. 31, 2481 (2007).

    Article  Google Scholar 

  45. H. Wang and M. A. Oehlschlaeger, Fuel 98, 249 (2012).

    Article  CAS  Google Scholar 

  46. V. P. Zhukov, V. A. Sechenov, and A. Yu. Starikovskiy, Fuel 126, 169 (2014).

    Article  CAS  Google Scholar 

  47. H. Ciezki and G. Adomeit, Combust. Flame 93, 421 (1993).

    Article  CAS  Google Scholar 

  48. K. Fieweger, R. Blumenthal, and G. Adomeit, Fuel 109, 599 (1997).

    CAS  Google Scholar 

  49. B. M. Gauthier, D. F. Davidson, and R. K. Hanson, Fuel 139, 300 (2004).

    CAS  Google Scholar 

  50. D. Darcy, M. Mehl, J. M. Simmie, et al., Proc. Combust. Inst. 34, 411 (2013).

    Article  CAS  Google Scholar 

  51. Yu. V. Tunik, Comput. Math. Math. Phys. 58, 1573 (2018).

    Article  Google Scholar 

  52. S. K. Godunov, Mat. Sb. 47 (89), 271 (1959).

    Google Scholar 

  53. Yu. V. Tunik, Fiz.-Khim. Kinet. Gaz. Dinam. 19 (1), 1 (2018).

    Google Scholar 

Download references

Funding

The study was carried out as part of a state assignment of the Ministry of Science and Higher Education of the Russian Federation “Experimental and theoretical study of kinetic processes in gases” (registration number AAAA-A19-119012990112-4) and with financial support from an international grant of the Russian Foundation for Basic Research, no. 20-51-00003 (Bel_a), using the Lomonosov supercomputer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Tunik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunik, Y.V., Gerasimov, G.Y. & Levashov, V.Y. Comparative Analysis of the Detonation Combustion of Kerosene and Gasoline Vapors in a Laval Nozzle. Russ. J. Phys. Chem. B 15, 801–809 (2021). https://doi.org/10.1134/S1990793121030301

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121030301

Keywords:

Navigation