Skip to main content
Log in

A Comparative Study of Nitrate and Iodide of the Spin-Variable Iron(III) Cation with the N4O2 Coordination Sphere by Mössbauer Spectroscopy

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The spin state of the magnetic center for a spin-variable cation with nitrate [FeIII(3-OMe-Sal2trien)]NO3⋅H2O(I) and iodide [FeIII(3-OMe-Sal2trien)]I (II) anions is studied by Mössbauer spectroscopy on 57Fe nuclei (3-OMe-Sal2trien is the condensation product of triethylenetetramine with 3-methoxy salicylaldehyde) in the temperature ranges of 5 to 305 and 85 to 296 K, respectively. It was shown that, for both complexes, only one low-spin (S = 1/2) doublet from iron(III) ions appears in the spectra, despite significant differences (up to ~10%) in the length of the iron(III)–ligand bonds in the N4O2 coordination octahedron of the salt II compared with I, according to X-ray diffraction data at 293 K. The Debye temperatures were determined for both compounds, Θ = 157 and 153 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. Gutlich and H. A. Goodwin, Top. Curr. Chem. 233, 1 (2004). https://doi.org/10.1007/b13527

    Article  CAS  Google Scholar 

  2. V. Ya. Krivnov and D. V. Dmitriev, Russ. J. Phys. Chem. B 15, 89 (2021). https://doi.org/10.1134/S199079312101022X

    Article  CAS  Google Scholar 

  3. M. V. Kirman and E. I. Kunitsyna, Russ. J. Phys. Chem. B 13, 408 (2019). https://doi.org/10.1134/S1990793119030187

    Article  CAS  Google Scholar 

  4. A. V. Lobanov and M. Ya. Melnikov, Russ. J. Phys. Chem. B 13, 565 (2019). https://doi.org/10.1134/S1990793119040110

    Article  CAS  Google Scholar 

  5. A. I. Kokorin, O. I. Gromov, T. Kálai, K. Hideg, and A. E. Putnikov, Russ. J. Phys. Chem. B 13, 739 (2019). https://doi.org/10.1134/S1990793119050178

    Article  CAS  Google Scholar 

  6. V. Ya. Krivnov, D. V. Dmitriev, and N. S. Erikhman, Russ. J. Phys. Chem. B 13, 923 (2019). https://doi.org/10.1134/S1990793119060228

    Article  CAS  Google Scholar 

  7. C.-M. Jureschi, J. Linares, A. Boulmaali, et al., Sensors 16, 187 (2016). https://doi.org/10.3390/s16020187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. R. Pritchard, S. A. Barrett, C. A. Kilner, et al., Dalton Trans., 3159 (2008). https://doi.org/10.1039/B801892H

  9. M. F. Tweedle and L. J. Wilson, J. Amer. Chem. Soc. 98, 4824 (1976). https://doi.org/10.1021/ja00432a023

    Article  CAS  Google Scholar 

  10. Y. N. Shvachko, N. G. Spitsyna, D. V. Starichenko, et al., Molecules 25, 4922 (2020). https://doi.org/10.3390/molecules25214922

    Article  CAS  PubMed Central  Google Scholar 

  11. M. A. Blagov, V. B. Krapivin, S. V. Simonov, et al., Dalton Trans. 47, 16040 (2018). https://doi.org/10.1039/C8DT03619E

    Article  CAS  PubMed  Google Scholar 

  12. N. Spitsyna, N. Ovanesyan, M. Blagov, et al., Eur. J. Inorg. Chem. 48, 4556 (2020). https://doi.org/10.1002/ejic.202000873

    Article  CAS  Google Scholar 

  13. Bruker TOPAS 5 User Manual (Bruker AXS GmbH, Germany, Karlsruhe, 2015).

  14. M. Blume, Phys. Rev. 174 (2), 351 (1968). https://doi.org/10.1103/PhysRev.174.351

    Article  Google Scholar 

  15. M. Blume, Phys. Rev. Lett. 18, 305 (1967). https://doi.org/10.1103/PhysRevLett.18.305

    Article  Google Scholar 

  16. W. M. Reiff, Coord. Chem. Rev. 10, 37 (1973). https://doi.org/10.1016/S0010-8545(00)80231-3

    Article  CAS  Google Scholar 

  17. S. R. Fletcher and T. C. Gibb, J. Chem. Soc., Dalton Trans., 309 (1977). https://doi.org/10.1039/DT9770000309

  18. T. C. Gibb, J. Chem. Soc. A, 1439 (1968). https://doi.org/10.1039/J19680001439

  19. S. Floquet, E. Riviére, K. Boukheddaden, et al., Polyhedron 80, 60 (2014). https://doi.org/10.1016/j.poly.2014.01.025

    Article  CAS  Google Scholar 

  20. I. Nemec, R. Herchel, I. Sălitroă, et al., CrystEngComm., No. 14, 7015 (2012). https://doi.org/10.1039/C2CE25862E

Download references

Funding

This study was carried out as part of a state task of IPCP RAS (registration number АААА-А19-119092390079-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Spitsyna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spitsyna, N.G., Ovanesyan, N.S. & Blagov, M.A. A Comparative Study of Nitrate and Iodide of the Spin-Variable Iron(III) Cation with the N4O2 Coordination Sphere by Mössbauer Spectroscopy. Russ. J. Phys. Chem. B 16, 565–571 (2022). https://doi.org/10.1134/S1990793122040157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122040157

Keywords:

Navigation