Skip to main content

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 233))

Abstract

In this chapter an outline is presented of the principal features of electronic spin crossover. The development of the subject is traced and the various modes of manifestation of spin transitions are presented. The role of cooperativity in influencing solid state behaviour is considered and the various strategies to strengthen it are addressed along with the chemical and physical perturbations which affect crossover behaviour. The role of intermediate spin states is discussed together with spin crossover in five-coordinate systems. The various techniques applied to monitoring a transition are presented briefly. An introduction to theoretical treatments is given and likely areas for future developments are suggested. Relevant review articles in the field are listed and reference to later chapters in the series is given where appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

abpt:

4-Amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole

bpy:

2,2′-Bipyridine

btr:

4,4′-Bis(1,2,4-triazole)

Cp :

Heat capacity

DSC:

Differential scanning calorimetry

EPR:

Electron paramagnetic resonance

HS:

High spin

LS:

Low spin

LIESST:

Light induced excited spin state trapping

mephen:

2-Methyl-1,10-phenanthroline

NIESST:

Nuclear decay induced excited spin state trapping

NMR:

Nuclear magnetic resonance

ox:

The oxalate ion

paptH:

2-(Pyridin-2-yl-amino)-4-(pyridin-2-yl)thiazole

phen:

1,10-Phenanthroline

phy:

1,10-Phenanthroline-2-carbaldehyde phenylhydrazone

pic:

2-Picolylamine

PM-BiA:

N-(2-Pyridylmethylene)aminobiphenyl

ptz:

1-n-Propyl-tetrazole

py:

Pyridine

SCO:

Spin crossover

ST:

Spin transition

T1/2 :

Spin transition temperature (temperature of 505% conversion of all “SCO-active” complex molecules)

TCNQ:

Tetracyanodiquinomethane

trpy:

2,2′:6′,2″-Terpyridine

trzH:

1,2,4-Triazole

ZFS:

Zero field splitting

References

  1. Pauling L (1932) J Am Chem Soc 54:988; (1940) The nature of the chemical bond, 2nd edn. Oxford University Press, London, p 32

    Google Scholar 

  2. Cambi L, Szegö L (1931) Ber Deutsch Chem Ges 64:167; Cambi L, Malatesta L (1937) Ber Deutsch Chem Ges 70:2067

    Google Scholar 

  3. Pauling L (1937) J Am Chem Soc 59:633

    Google Scholar 

  4. Orgel LE (1956) Quelques problèmes de chimie minérale, 10 ème Conseil de Chimie, Bruxelles 289

    Google Scholar 

  5. Figgins PE, Busch DH (1960) J Am Chem Soc 82:820; Robinson MA, Curry JD, Busch DH (1963) Inorg Chem 2:1178

    Google Scholar 

  6. Stoufer RC, Busch DH, Hadley WB (1961) J Am Chem Soc 83:3732

    Google Scholar 

  7. Madeja K, König E (1963) J Inorg Nucl Chem 25:377

    Google Scholar 

  8. Ewald AH, Martin RL, Ross IG, White AH (1964) Proc R Soc A 280:235

    Google Scholar 

  9. Mössbauer RL (1958) Z Physik 45:538

    Google Scholar 

  10. Frank E, Abeledo CR (1966) Inorg Chem 5:1453; Golding RM, Whitfield HJ (1966) Trans Faraday Soc 62:1713

    Google Scholar 

  11. König E, Madeja K (1966) Chem Comm 61

    Google Scholar 

  12. Ballhausen CJ, Liehr AD (1959) J Am Chem Soc 81:538

    Google Scholar 

  13. König E, Kremer S (1971) Theor Chim Acta 23:12

    Google Scholar 

  14. Reinen D, Friebel C, Propach V (1974) Z Anorg Allg Chem 408:187

    Google Scholar 

  15. Chang H-R, McCusker JK, Toftlund H, Wilson SR, Trautwein AX, Winkler H, Hendrickson DN (1990) J Am Chem Soc 112:6814

    Google Scholar 

  16. Kahn O, Launay JP (1988) Chemtronics 3:140

    Google Scholar 

  17. Kahn O, Martinez CJ (1998) Science 279:44

    Google Scholar 

  18. Mikami M, Konno M, Saito Y (1980) Acta Cryst B 36:275

    Google Scholar 

  19. König E, Ritter G, Kulshreshtha SK, Waigel J, Sacconi L (1984) Inorg Chem 23:1241; Wu CC, Jung J, Gantzel PK, Gütlich P, Hendrickson DN (1997) Inorg Chem 36:5339

    Google Scholar 

  20. König E, Ritter G, Kulshreshtha SK, Nelson SM (1982) Inorg Chem 21:3022

    Google Scholar 

  21. Zelentsov VV (1981) Sov Sci Rev B Chem 81:543

    Google Scholar 

  22. Matouzenko GS, Létard J-F, Lecocq S, Bousseksou A, Capes L, Salmon L, Perrin M, Kahn O, Collet A (2001) Eur J Inorg Chem 2935

    Google Scholar 

  23. Real J-A, Bolvin H, Bousseksou A, Dworkin A, Kahn O, Varret F, Zarembowitch J (1992) J Am Chem Soc 114:4650

    Google Scholar 

  24. Köppen H, Müller EW, Köhler CP, Spiering H, Meissner E, Gütlich P (1982) Chem Phys Lett 91:348

    Google Scholar 

  25. Jakobi R, Spiering H, Gütlich P (1992) J Phys Chem Solids 53:267; Romstedt H, Hauser A, Spiering H (1998) J Phys Chem Solids 59:265

    Google Scholar 

  26. Ritter G, König E, Irler W, Goodwin HA (1978) Inorg Chem 17:224

    Google Scholar 

  27. Buchen T, Gütlich P, Goodwin HA (1994) Inorg Chem 33:4573; Buchen T, Gütlich P, Sugiyarto KH, Goodwin HA (1996) Chem Eur J 2:1134

    Google Scholar 

  28. Hayami S, Maeda Y (1997) Inorg Chim Acta 255:181

    Google Scholar 

  29. Moliner N, Gaspar AB, Muñoz MC, Niel V, Cano J, Real JA (2001) Inorg Chem 40:3986

    Google Scholar 

  30. Evans DF (1959) J Chem Soc 2003

    Google Scholar 

  31. Palacio F (1996) In: Coronado E, Delhaès P, Gatteschi D, Miller JS (eds) Localized and itinerant molecular magnetism. From molecular assemblies to the devices. Kluwer Academic, NATO ASI Series C 321:5

    Google Scholar 

  32. Kahn O (1993) Molecular magnetism. VCH, New York Heidelberg

    Google Scholar 

  33. Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman and Hall Ltd, London

    Google Scholar 

  34. Gütlich P, Link R, Trautwein AX (1978) Mössbauer spectroscopy and transition metal chemistry. Inorganic Chemistry Concepts Series No 3. Springer, Berlin Heidelberg New York

    Google Scholar 

  35. Jung J, Spiering H, Yu Z, Gütlich P (1995) Hyperfine Interact 95:107

    Google Scholar 

  36. Ksenofontov V, Spiering H, Reiman S, Garcia Y, Gaspar AB, Moliner N, Real JA, Gütlich P (2001) Chem Phys Lett 348:381

    Google Scholar 

  37. Adler P, Spiering H, Gütlich P (1987) Inorg Chem 26:3840

    Google Scholar 

  38. Blume M (1968) Phys Rev 174:351; Blume M, Tjon JA (1968) Phys Rev 165:446; Tjon JA, Blume M (1968) Phys Rev 165:456

    Google Scholar 

  39. Hauser A (1991) J Chem Phys 94:2741

    Google Scholar 

  40. Hauser A, Adler J, Gütlich P (1988) Chem Phys Lett 152:468

    Google Scholar 

  41. Decurtins S, Gütlich P, Hasselbach KM, Hauser A, Spiering H (1985) Inorg Chem 24:2174

    Google Scholar 

  42. Takemoto JH, Hutchinson B (1972) Inorg Nucl Chem Lett 8:769; (1973) Inorg Chem 12:705; Takemoto JH, Streusand B, Hutchinson B (1974) Spectrochim Acta A 30:827

    Google Scholar 

  43. Müller EW, Ensling J, Spiering H, Gütlich P (1983) Inorg Chem 22:2074; Herber RH (1987) Inorg Chem 26:173; Figg DC, Herber RH (1990) Inorg Chem 29:2170; Bousseksou A, McGarvey JJ, Varret F, Real JA, Tuchagues J-P, Dennis AC, Boillot ML (2000) Chem Phys Lett 318:409

    Google Scholar 

  44. König E (1991) Struct Bond 76:51

    Google Scholar 

  45. Sorai M, Seki S (1972) J Phys Soc Jpn 33:575

    Google Scholar 

  46. Sorai M, Seki S (1974) J Phys Chem Solids 35:555

    Google Scholar 

  47. Kaji K, Sorai M (1985) Thermochim Acta 88:185; Jakobi R, Romstedt H, Spiering H, Gütlich P (1992) Angew Chem Int Ed Eng 31:178

    Google Scholar 

  48. Conti AJ, Kaji K, Nagano Y, Sena KM, Yumoto Y, Chadha RK, Rheingold AL, Sorai M, Hendrickson DN (1993) Inorg Chem 32:2681

    Google Scholar 

  49. Garcia Y, Kahn O, Ader J-P, Buzdin A, Meurdesoif Y, Guillot M (2000) Phys Lett A 271:145

    Google Scholar 

  50. König E, Ritter G, Kulshreshtha SK, Waigel J, Goodwin HA (1984) Inorg Chem 23:1896; Kulshreshtha SK, Iyer RM (1987) Chem Phys Lett 134:239

    Google Scholar 

  51. Romstedt H, Spiering H, Gütlich P (1998) J Phys Chem Sol 59:1353

    Google Scholar 

  52. Kohlhaas T, Spiering H, Gütlich P (1997) Z Physik B 102:455

    Google Scholar 

  53. Alvarez S (2003) J Am Chem Soc 125:6795

    Google Scholar 

  54. König E, Ritter G, Kulshreshtha SK (1985) Chem Rev 85:219

    Google Scholar 

  55. König E, Ritter G, Irler W, Goodwin HA (1980) J Am Chem Soc 102:4681

    Google Scholar 

  56. Michalowicz A, Moscovici J, Garcia Y, Kahn O (1999) J Synchr Rad 6:231; Michalowicz A, Moscovici J, Charton J, Sandid F, Benamrane F, Garcia Y (2001) J Synchr Rad 8:701

    Google Scholar 

  57. Chen LX, Wang Z, Burdett JK, Montano PA, Norris JR (1995) J Phys Chem 99:7958; Lee J-J, Sheu H, Lee C-R, Chen J-M, Lee J-F, Wang, C-C, Huang C-H, Wang Y (2000) J Am Chem Soc 122:5742; Erenburg SB, Bausk NV, Lavrenova LG, Mazalov LN (1999) J Synchr Rad 6:576; Erenburg SB, Bausk NV, Lavrenova LG, Mazalov LN (2001) J Magn Magn Mater 226:1967

    Google Scholar 

  58. Boca R, Vrbova M, Werner R, Haase W (2000) Chem Phys Lett 328:188

    Google Scholar 

  59. Sankar G, Thomas JM, Varma V, Kulkarni GU, Rao CNR (1996) Chem Phys Lett 251:79; Young NA (1996) J Chem Soc Dalton Trans 1275; Welker H, Grünsteudel HF, Ritter G, Lübbers R, Hesse HJ, Nowitzke G, Wortmann GH, Goodwin HA (1996) Conference Proceedings ICAME 95 19; Lübbers R, Nowitzke G, Goodwin HA, Wortmann G (1997) J Phys IV 7:651; Real JA, Castro I, Bousseksou A, Verdaguer M, Burriel R, Castro M, Linarès J, Varret J-F (1997) Inorg Chem 36:455

    Google Scholar 

  60. Zarembowitch J (1992) New J Chem 16:255; Hannay C, Hubin-Franskin MJ, Grandjean F, Briois V, Itié JP, Polian A, Trofimenko S, Long GJ (1997) Inorg Chem 36:5580

    Google Scholar 

  61. Butzlaff C, Bill E, Meyer W, Winkler H, Trautwein AX, Beissel T, Wieghardt K (1994) Hyperfine Interact 90:453; McGrath CM, O’Connor CJ, Sangregorio C, Seddon JMW, Sinn E, Sowrey FE, Young NA (1999) Inorg Chem Comm 2:536

    Google Scholar 

  62. Verelst M, Sommier L, Lecante P, Mosset A, Kahn O (1998) Chem Mater 10:980

    Google Scholar 

  63. van Bürck U, Smirnov GV (1994) Hyperfine Interact 90:313

    Google Scholar 

  64. Chumakov AI, Rüffer R, Grünsteudel H, Grünsteudel HF, Grübel G, Metge J, Leupold O, Goodwin HA (1995) Europhys Lett 30:427; Grünsteudel H, Paulsen H, Meyer-Klaucke W, Winkler H, Trautwein AX, Grünsteudel HF, Baron AQR, Chumakov AI, Rüffer R, Toftlund H (1998) Hyperfine Interact 113:311

    Google Scholar 

  65. Grünsteudel H, Paulsen H, Winkler H, Trautwein AX, Toftlund H (1999) Hyperfine Interact 123/124:841; Chumakov AI, Rüffer R, Leupold O, Sergueev I (2003) Struct Chem 14:109

    Google Scholar 

  66. Evans DF, James TA (1979) J Chem Soc Dalton Trans 723

    Google Scholar 

  67. Jesson JP, Trofimenko S, Eaton DR (1967) J Am Chem Soc 89:3158

    Google Scholar 

  68. Maiti B, McGarvey BR, Rao PS, Stubbs L (1983) J Mag Res 54:99

    Google Scholar 

  69. Ozarowski A, Shunzong Y, McGarvey BR, Mislankar A, Drake JE (1991) Inorg Chem 30:3167

    Google Scholar 

  70. Bokor M, Marek T, Tompa K (1996) J Mag Res Ser A 122:157; Bokor M, Marek T, Suvegh K, Tompa K, Vértes A, NemesVetessy Z, Burger K (1996) J Radioan Nucl Chem 211:247; Marek T, Bokor M, Lansada G, Parkanyi L, Buschmann J (2000) J Phys Chem Solids 61:621

    Google Scholar 

  71. Bokor M, Marek T, Tompa K, Gütlich P, Vértes A (1999) Eur Phys J D 7:56

    Google Scholar 

  72. Timken MD, Wilson SR, Hendrickson DN (1985) Inorg Chem 24:3450

    Google Scholar 

  73. Kennedy BJ, Murray KS, Zwack PR, Homborg H, Kalz W (1986) Inorg Chem 25:2539

    Google Scholar 

  74. Schmidt JG, Brey WS, Stoufer RC (1967) Inorg Chem 6:268; Zarembowitch J, Kahn O (1984) Inorg Chem 23:589

    Google Scholar 

  75. Rao PS, Reuveni A, McGarvey BR, Ganguli P, Gütlich P (1981) Inorg Chem 20:204

    Google Scholar 

  76. Vreugdenhil W, Haasnoot JG, Kahn O, Thuéry P, Reedijk J (1987) J Am Chem Soc 109:5272

    Google Scholar 

  77. Kajcsos Z, Vértes A, Szeles C, Burger K, Spiering H, Gütlich P, Abbe JC, Haissler H, Brauer CP, Köhler CP (1985) In: Jain PC, Singru RM, Gopinathan KP (eds) Positron annihilation. World Scientific, Singapore, p 195

    Google Scholar 

  78. Vértes A, Süvegh K, Hinek R, Gütlich P (1994) Hyperfine Interact 84:483; Nagai Y, Saito H, Hyodo T, Vértes A, Süvegh K (1998) Phys Rev B 57:14,119; Vértes A, Süvegh K, Bokor M, Domján A, Marek T, Ivá B, Vankó G (1999) Rad Phys Chem 55:541

    Google Scholar 

  79. Shioyasu N, Kagetsu K, Mishima K, Kubo MK, Tominaga T, Nishiyama K, Nagamine K (1994) Hyperfine Interact 84:477

    Google Scholar 

  80. Blundell SJ, Pratt FL, Lancaster T, Marshall IM, Steer CA, Hayes W, Sugano T, Létard JF, Caneschi A, Gatteschi D, Heath SL (2003) Phys B Condens Matter 326:556; Blundell SJ, Pratt FL, Lancaster T, Marshall IM, Steer CA, Heath SL, Létard J-F, Sugano T, Mihailovic D, Omerzu A (2003) Polyhedron 22:1973; Blundell SJ, Pratt FL, Marshall IM, Steer CA, Hayes W, Létard J-F, Heath SL, Caneschi A, Gatteschi D (2003) Synth Met 133/134:531

    Google Scholar 

  81. Campbell SJ, Ksenofontov V, Garcia Y, Lord JS, Boland Y, Gütlich P (2003) J Phys Chem B 107:14289

    Google Scholar 

  82. Beattie JK, Sutin N, Turner DH, Flynn GW (1973) J Am Chem Soc 95:2052; Beattie JK, Binstead RA, West RJ (1978) J Am Chem Soc 100:3044

    Google Scholar 

  83. Decurtins S, Gütlich P, Köhler CP, Spiering H, Hauser A (1984) Chem Phys Lett 105:1

    Google Scholar 

  84. Paulsen H, Duelund L, Winkler H, Toftlund H, Trautwein AX (2001) Inorg Chem 20:2201; Reiher M (2002) Inorg Chem 41:6928; Brehm G, Reiher M, Schneider S (2002) J Phys Chem A 106:12024

    Google Scholar 

  85. Müller EW, Spiering H, Gütlich P (1982) Chem Phys Lett 93:567

    Google Scholar 

  86. Real J-A, Gallois B, Granier T, Suez-Panama F, Zarembowitch J (1992) Inorg Chem 31:4972

    Google Scholar 

  87. Granier T, Gallois B, Gaultier J, Real JA, Zarembowitch J (1993) Inorg Chem 32:5305

    Google Scholar 

  88. Marchivie M, Guionneau P, Howard JAK, Chastanet G, Létard J-F, Goeta AE, Chasseau D (2002) J Am Chem Soc 124:194

    Google Scholar 

  89. Baker WA, Bobonich HM (1964) Inorg Chem 3:1184

    Google Scholar 

  90. Dézsi I, Molnar B, Tarnoczi T, Tompa K (1967) J Inorg Nucl Chem 29:2486

    Google Scholar 

  91. Edwards MP, Hoff CD, Curnutte B, Eck JS, Purcell KF (1984) Inorg Chem 23:2613

    Google Scholar 

  92. Kunkeler PJ, van Koningsbruggen PJ, Cornelissen JP, van der Horst AN, van der Kraan AM, Spek AL, Haasnoot JG, Reedijk J (1996) J Am Chem Soc 118:2190

    Google Scholar 

  93. Czernuszewicz RS, Nakamoto K, Strommen DP (1980) Inorg Chem 19:793

    Google Scholar 

  94. König E, Schnakig R, Ritter G, Irler W, Kanellakopulos B, Powietzka B (1979) Inorg Chim Acta 35:239

    Google Scholar 

  95. McKenzie ED (1971) Coord Chem Rev 6:187

    Google Scholar 

  96. Niel V, Gaspar AB, Muñoz MC, Abarca B, Ballesteros R, Real JA (2003) Inorg Chem 42:4782

    Google Scholar 

  97. Moliner N, Muñoz MC, Létard S, Létard J-F, Solans X, Burriel R, Castro M, Kahn O, Real JA (1999) Inorg Chim Acta 291:279

    Google Scholar 

  98. Zhu D, Xu Y, Yu Z, Guo Z, Sang H, Liu T, You X (2002) Chem Mater 14:838

    Google Scholar 

  99. Claude R, Real J-A, Zarembowitch J, Kahn O, Ouahab L, Grandjean D, Boukheddaden K, Varret F, Dworkin A (1990) Inorg Chem 29:4442

    Google Scholar 

  100. Little BF, Long GJ (1978) Inorg Chem 17:3401

    Google Scholar 

  101. Boillot M-L, Roux C, Audière J-P, Dausse A, Zarembowitch J (1996) Inorg Chem 35:3975

    Google Scholar 

  102. Moliner N, Muñoz C, Létard S, Solans X, Menéndez N, Goujon A, Varret F, Real JA (2000) Inorg Chem 39:5390

    Google Scholar 

  103. Buchen T, Toftlund H, Gütlich P (1996) Chem Eur J 2:1129; Toftlund H, Pederson E, Yde-Andersen S (1984) Acta Chem Scand A 38:693

    Google Scholar 

  104. Matouzenko GS, Bousseksou A, Lecocq S, van Koningsbruggen PJ, Perrin M, Kahn O, Collet A (1997) Inorg Chem 36:5869

    Google Scholar 

  105. König E, Madeja K (1968) Inorg Chem 7:1848

    Google Scholar 

  106. König E, Ritter G, Kanellakopulos BJ (1973) Chem Phys 58:3001; König E, Schnakig R (1973) Theor Chim Acta 30:205

    Google Scholar 

  107. König E, Ritter G, Goodwin HA (1981) Inorg Chem 20:3677

    Google Scholar 

  108. Cunningham AJ, Fergusson JE, Powell HKJ, Sinn E, Wong H (1972) J Chem Soc Dalton Trans 2155; Figg DC, Herber RH, Felner I (1991) Inorg Chem 30:2535

    Google Scholar 

  109. Klose A, Hesschenbrouck J, Solari E, Latronico M, Floriani C, Re N, Chiesi-Villa A, Rizzoli M (1999) J Organomet Chem 591:45

    Google Scholar 

  110. König E, Ritter G, Goodwin HA, Smith FE (1973) J Coord Chem 2:257

    Google Scholar 

  111. Childs BC, Goodwin HA (2001) Aust J Chem 54:685

    Google Scholar 

  112. Butcher RJ, Sinn E (1976) J Am Chem Soc 98:2440; Butcher RJ, Sinn E (1976) J Am Chem Soc 98:5159; Pignolet LH, Patterson GS, Weiher JF, Holm RH (19174) Inorg Chem 13:1263; Malliaris A, Papaefthimiou V (1981) J Chem Phys 74:3626

    Google Scholar 

  113. Koch WO, Schünemann V, Gerdan M, Trautwein AX, Krüger H-J (1998) Chem Eur J 4:686

    Google Scholar 

  114. Ohgo Y, Ikeue T, Nakamura M (2002) Inorg Chem 41:1698; Ikeue T, Ohgo Y, Yamaguchi T, Takahishi M, Takeda M, Nakamura M (2001) Angew Chem Int Ed Engl 40:2617

    Google Scholar 

  115. Kelly WSJ, Ford GH, Nelson (1971) J Chem Soc A 388

    Google Scholar 

  116. Bacci M, Midolini P, Stoppioni P, Sacconi L (1973) Inorg Chem 12:1801; Bacci M, Ghilardi CA (1974) Inorg Chem 13:2398; Bacci M, Ghilardi CA, Orlandini A (1984) Inorg Chem 23:2798

    Google Scholar 

  117. König E, Ritter G, Goodwin HA (1975) Chem Phys Lett 31:543

    Google Scholar 

  118. Kahn O (1993) Molecular magnetism. VCH, New York Heidelberg, p 87

    Google Scholar 

  119. Reed CA, Guist F (1996) J Am Chem Soc 118:3281

    Google Scholar 

  120. Earnshaw A, King EA, Larkworthy LF(1965) Chem Comm 180; (1969) J Chem Soc A 2459

    Google Scholar 

  121. Wells FV, McCann SW, Wickman HH, Kessel SL, Hendrickson DN, Feltham RD (1982) Inorg Chem 21:2306

    Google Scholar 

  122. König E, Ritter G, Waigel J, Larkworthy LF, Thompson RM (1987) Inorg Chem 26:1563

    Google Scholar 

  123. Brewer G, Jasinski J, Mahany W, May L, Prytkov S (1995) Inorg Chim Acta 232:183; Chun H, Bill E, Weyhermüller T, Wieghardt K (2003) Inorg Chem 42:5612

    Google Scholar 

  124. Fettouhi M, Morsy M, Waheed A, Golhen S, Ouahab L, Sutter J-P, Kahn O, Menendez N, Varret F (1999) Inorg Chem 38:4910; Sutter J-P, Fettouhi M, Li L, Michaut C, Ouahab L, Kahn O (1996) Angew Chem Int Ed Engl 35:2113

    Google Scholar 

  125. Franke PL, Haasnoot JG, Zuur AP (1982) Inorg Chim Acta 59:5; Müller EW, Ensling J, Spiering H, Gütlich P (1983) Inorg Chem 22:2074

    Google Scholar 

  126. McGhee L, Siddique RM, Winfield JM (1988) J Chem Soc Dalton Trans 1309

    Google Scholar 

  127. Renovitch GA, Baker WA (1967) J Am Chem Soc 89:6377; Sorai M, Ensling J, Gütlich P (1976) Chem Phys 18:199; Spiering H, Meissner E, Köppen H, Müller EW, Gütlich P (1982) Chem Phys 68:65

    Google Scholar 

  128. Hieber W, Floss JG (1957) Z Anorg Allg Chem 291:314

    Google Scholar 

  129. Hoselton MA, Wilson LJ, Drago RS (1975) J Am Chem Soc 97:1722

    Google Scholar 

  130. Martin LL, Hagen KS, Hauser A, Martin RL, Sargeson AM (1988) J Chem Soc Chem Comm 1313; Martin LL, Martin RL, Sargeson AM (1994) Polyhedron 13:1969

    Google Scholar 

  131. Wieghardt K, Küppers HJ, Weiss J (1985) Inorg Chem 24:3067; Turner JW, Schultz FA (1999) Inorg Chem 38:358

    Google Scholar 

  132. Boinnard D, Bousseksou A, Dworkin A, Savariault JM, Varret F, Tuchagues JP (1994) Inorg Chem 33:271

    Google Scholar 

  133. Grillo VA, Gahan LR, Hanson GR, Stranger R, Hambley TW, Murray KS, Moubaraki B, Cashion JD (1998) J Chem Soc Dalton Trans 2341

    Google Scholar 

  134. Nelson SM, McIlroy PDA, Stevenson CS, König E, Ritter G, Waigel J (1986) J Chem Soc Dalton Trans 991

    Google Scholar 

  135. Hayami S, Gu Z, Einaga Y, Fujishima A, Sato O (2000) Mol Cryst Liq Cryst Sci Tech A 343:383

    Google Scholar 

  136. Goodwin HA, Sylva RN (1968) Aust J Chem 21:83; Goodwin HA, Kucharski ES, White AH (1983) Aust J Chem 36:1115

    Google Scholar 

  137. Fleisch J, Gütlich P, Hasselbach KM (1977) Inorg Chem 16:1979

    Google Scholar 

  138. Reiff WM, Long GJ (1974) Inorg Chem 13:2150; Fleisch J, Gütlich P, Hasselbach KM (1976) Inorg Chim Acta 17:51

    Google Scholar 

  139. König E, Ritter G, Madeja K, Rosenkranz A (1972) J Inorg Nucl Chem 34:2877

    Google Scholar 

  140. König E, Ritter G, Irler W, Kanellakopulos B (1977) J Phys C Solid State Phys 10:603; König E, Ritter G, Irler W (1979) Chem Phys Lett 66:336

    Google Scholar 

  141. Spacu P, Todorescu M, Filotti G, Telnic P (1972) Z Anorg Allg Chem 392:88

    Google Scholar 

  142. Hogg R, Wilkins RG (1962) J Chem Soc 341

    Google Scholar 

  143. Sylva RN, Goodwin HA (1967) Aust J Chem 20:479

    Google Scholar 

  144. Sorai M, Ensling J, Hasselbach KM, Gütlich P (1977) Chem Phys 20:197

    Google Scholar 

  145. Garcia Y, van Koningsbruggen PJ, Lapouyade R, Rabardel L, Kahn O, Wieczorek M, Bronisz R, Ciunik Z, Rudolf MF (1998) CR Acad Sci Paris II c 523

    Google Scholar 

  146. Gütlich P, Köppen H, Steinhäuser HG (1980) Chem Phys Lett 74(3):475

    Google Scholar 

  147. Gütlich P (1984) In: Long GJ (ed) Mössbauer spectroscopy applied to inorganic chemistry, vol 1. Plenum, New York, p 287

    Google Scholar 

  148. Greenaway AM, Sinn E (1978) J Am Chem Soc 100:8080

    Google Scholar 

  149. Sugiyarto KH, Craig DC, Rae AD, Goodwin HA (1993) Aust J Chem 46:1269

    Google Scholar 

  150. Sorai M, Ensling J, Gütlich P (1976) Chem Phys 18:199; Spiering H, Meissner E, Köppen H, Müller EW, Gütlich P (1982) Chem Phys 68:65

    Google Scholar 

  151. Renz F, Oshio H, Ksenofontov V, Waldeck M, Spiering H, Gütlich P (2000) Angew Chem Int Ed 39:3699

    Google Scholar 

  152. Hauser A (1991) Coord Chem Rev 111:275

    Google Scholar 

  153. Bargeron CB, Avinor M, Drickamer HG (1971) Inorg Chem 10:1338

    Google Scholar 

  154. Haddad MS, Federer WD, Lynch MW, Hendrickson DN (1980) J Am Chem Soc 102:1468; (1981) Inorg Chem 20:131

    Google Scholar 

  155. Ganguli P, Gütlich P, Müller EW, Irler W (1981) J Chem Soc Dalton Trans 441

    Google Scholar 

  156. König E, Madeja K, Watson K (1968) J Am Chem Soc 90:1146

    Google Scholar 

  157. Létard J-F, Chastenet G, Nguyen O, Marcén S, Marchivie M, Guionneau P, Chasseau D, Gütlich P (2003) Monatsh Chem 134:165

    Google Scholar 

  158. Fisher DC, Drickamer HG (1971) J Chem Phys 54:4825

    Google Scholar 

  159. Cohen RE, Mazin II, Isaak DG (1997) Science 275:654; Hemley RJ, Mao HK, Gramsch SA (2000) Mineralog Mag 64:157

    Google Scholar 

  160. Rueff J-P, Kao CC, Struzhkin VV, Badro J, Shu J, Hemley RJ, Mao HK (1999) Phys Rev Lett 82:3284

    Google Scholar 

  161. König E, Ritter G, Waigel J, Goodwin HA (1985) J Chem Phys 83:3055; Ksenofontov V, Spiering H, Schreiner A, Levchenko G, Goodwin HA, Gütlich P (1999) J Phys Chem Solids 60:393

    Google Scholar 

  162. Ksenofontov V, Levchenko G, Spiering H, Gütlich P, Létard J-F, Bouhedja Y, Kahn O (1998) Chem Phys Lett 294:545

    Google Scholar 

  163. Garcia Y, van Koningsbruggen PJ, Lapouyade R, Fournès L, Rabardel L, Kahn O, Ksenofontov V, Levchenko G, Gütlich P (1998) Chem Mater 10:2426

    Google Scholar 

  164. Garcia Y, Ksenofontov V, Levchenko G, Gütlich P (2000) J Mater Chem 10:2274

    Google Scholar 

  165. McGarvey JJ, Lawthers I (1982) J Chem Soc Chem Comm 906

    Google Scholar 

  166. Decurtins S, Gütlich P, Hasselbach KM, Spiering H, Hauser A (1985) Inorg Chem 24:2

    Google Scholar 

  167. Hauser A (1986) Chem Phys Lett 124:543

    Google Scholar 

  168. Suemura N, Ohama M, Kaizaki S (2001) J Chem Soc Chem Comm 1538

    Google Scholar 

  169. Collison D, Garner CD, McGrath CM, Mosselmans JFW, Roper MD, Seddon JMW, Sinn E, Young NA (1997) J Chem Soc Dalton Trans 22:4371

    Google Scholar 

  170. Ensling J, Gütlich P, Hasselbach KM, Fitzsimmons BW (1976) Chem Phys Lett 42:232; Fleisch J, Gütlich P (1977) Chem Phys Lett 45:29; Fleisch J, Gütlich P, Köppen H (1980) Radiochem Radioanal Lett 42:279

    Google Scholar 

  171. Zarembowitch J, Roux C, Boillot ML, Claude R, Itie J-P, Polian A, Bolte M (1993) Mol Cryst Liq Cryst 34:247; Boillot ML, Roux C, Audière J-P, Dausse A, Zarembowitch J (1996) Inorg Chem 35:3975

    Google Scholar 

  172. Boillot M-L, Chantraine S, Zarembowitch J, Lallemand J-Y, Prunet J (1999) New J Chem 179

    Google Scholar 

  173. Boillot ML, Sour A, Delhaès P, Mingotaud C, Soyer H (1999) Coord Chem Rev 192:47

    Google Scholar 

  174. Létard J-F, Guionneau P, Rabardel L, Howard JAK, Goeta AE, Chasseau D, Kahn O (1998) Inorg Chem 37:4432

    Google Scholar 

  175. Varret F, Boukheddaden K, Jeftic J, Roubeau O (1999) Mol Cryst Liq Cryst 335:561

    Google Scholar 

  176. Desaix A, Roubeau O, Jeftic J, Haasnoot JG, Boukheddaden K, Codjovi E, Linarès J, Nogues M, Varret F (1998) Eur Phys B 6:183; Varret F, Boukheddaden K, Jeftic J, Roubeau O (1999) Mol Cryst Liq Cryst 335:561

    Google Scholar 

  177. Renz F, Spiering H, Goodwin HA, Gütlich P (2000) Hyperfine Interact 126:155

    Google Scholar 

  178. König E, Ritter G, Kulshreshtha SK, Waigel J, Goodwin HA (1984) Inorg Chem 23:1896

    Google Scholar 

  179. Qi Y, Müller EW, Spiering H, Gütlich P (1983) Chem Phys Lett 101:503

    Google Scholar 

  180. Bousseksou A, Nègre N, Goiran M, Salmon L, Tuchagues J-P, Boillot M-L, Boukheddaden K, Varret F (2000) Eur Phys J B 13:451

    Google Scholar 

  181. Bousseksou A, Molnár G, Tuchagues J-P, Menéndez N, Codjovi E, Varret F (2003) C R Chim 6:329

    Google Scholar 

  182. Bozza G (1933) Gazz Chim Ital 63:778

    Google Scholar 

  183. Chesnut DB (1964) J Chem Phys 40:405

    Google Scholar 

  184. Wajnflasz J (1970) Phys Stat Sol 40:537

    Google Scholar 

  185. Slichter CP, Drickamer HG (1972) J Chem Phys 56:2142

    Google Scholar 

  186. Bari RA, Sivardière X (1972) Phys Rev B 5:4466

    Google Scholar 

  187. Zimmermann R, König E (1977) J Phys Chem Solids 38:779

    Google Scholar 

  188. Everett DH, Whitton WI (1952) Trans Faraday Soc 48:749; Everett DH, Smith FW (1954) Trans Faraday Soc 50:187; Everett DH (1954) Trans Faraday Soc 50:1077; Everett DH (1955) Trans Faraday Soc 51:1551

    Google Scholar 

  189. Müller EW, Spiering H, Gütlich P (1983) J Chem Phys 79:1439

    Google Scholar 

  190. König E, Kanellakopulos B, Powietzka B, Goodwin HA (1990) Inorg Chem 29:4944

    Google Scholar 

  191. König E, Kanellakopulos B, Powietzka B, Nelson J (1993) J Chem Phys 99:9195

    Google Scholar 

  192. Molnár G, Bousseksou A, Zwick A, McGarvey JJ (2003) Chem Phys Lett 367:593

    Google Scholar 

  193. Kambara T (1979) J Chem Phys 70:4199; Kambara T (1980) J Phys Soc Jpn 49:1806

    Google Scholar 

  194. Kambara T (1981) J Phys Soc Jpn 50:2257

    Google Scholar 

  195. Sasaki N, Kambara T (1981) J Chem Phys 74:3472

    Google Scholar 

  196. Sanner I, Meissner E, Köppen H, Spiering H, Gütlich P (1984) Chem Phys 86:227; Willenbacher N, Spiering H (1988) J Phys C Solid State Phys 21:1423; Spiering H, Willenbacher N (1989) J Phys Condens Matter 1:10,089

    Google Scholar 

  197. Linarès J, Nasser J, Boukheddaden K, Bousseksou A, Varret F (1995) J Magn Magn Mater 140:1507

    Google Scholar 

  198. Romstedt H, Hauser A, Spiering (1998) J Phys Chem Solids 59:265

    Google Scholar 

  199. Spiering H, Kohlhaas T, Romstedt H, Hauser A, Bruns-Yilmaz C, Kusz J, Gütlich P (1999) Coord Chem Rev 192:629

    Google Scholar 

  200. Constant Machado H, Linarès J, Varret F, Haasnoot JG, Martin JP, Zarembowitch J, Dworkin A, Bousseksou A (1996) J Phys I 6:1203

    Google Scholar 

  201. Sakai O, Ishii M, Ogawa T, Koshino K (2002) J Phys Soc Jpn 71:2052

    Google Scholar 

  202. Barefield EK, Busch DH, Nelson SM (1968) Q Rev 22:457

    Google Scholar 

  203. König E (1968) Coord Chem Rev 3:471

    Google Scholar 

  204. Martin RL, White AH (1968) Trans Met Chem 4:113

    Google Scholar 

  205. Sacconi L (1971) Pure App Chem 27:161

    Google Scholar 

  206. Machado AASC (1971) Rev Port Quim 13:88; (1972) 14:65; (1972) 14:83

    Google Scholar 

  207. Sacconi L (1972) Coord Chem Rev 8:351

    Google Scholar 

  208. Drickamer HG, Frank CW (1973) Electronic transitions and the high pressure chemistry and physics of solids. Chapman and Hall, London, p 126

    Google Scholar 

  209. Drickamer HG (1974) Angew Chem 86:61

    Google Scholar 

  210. Goodwin HA (1976) Coord Chem Rev 18:293

    Google Scholar 

  211. Sorai M (1977) Kagaku (Kyoto) 32:748

    Google Scholar 

  212. Gütlich P (1979) J Phys Colloq (Orsay) 2:378

    Google Scholar 

  213. Drabent K, Wajda S (1980) Wiad Chem 34:205

    Google Scholar 

  214. Gütlich P (1981) Struct Bond 44:83

    Google Scholar 

  215. Gütlich P (1981) Recent investigations of spin crossover. In: Stevens JG, Shenoy GK (eds) Mössbauer spectroscopy and its chemical applications. American Chemical Society Advances in Chemistry Series no. 194, p 405

    Google Scholar 

  216. Scheidt WR, Reed CA (1981) Chem Rev 81:543

    Google Scholar 

  217. Gütlich P (1984) Spin transition in iron compounds. In: Herber R (ed) Chemical mössbauer spectroscopy. Plenum, New York, p 27

    Google Scholar 

  218. Rao CNR (1985) Int Rev Phys Chem 4:19

    Google Scholar 

  219. Decurtins S, Gütlich P, Hauser A, Spiering H (1987) Light induced excited state trapping. In: Yersin H, Vogler A (eds) Photochemistry and photophysics of coordination compounds (Proc Int Symp). Springer, Berlin Heidelberg New York, p 9

    Google Scholar 

  220. Gütlich P (1987) Hyperfine Interact 33:105

    Google Scholar 

  221. König E (1987) Prog Inorg Chem 35:527

    Google Scholar 

  222. Bacci M (1988) Coord Chem Rev 86:245

    Google Scholar 

  223. Beattie JK (1988) Adv Inorg Chem 32:1

    Google Scholar 

  224. Maeda Y, Takashima Y (1988) Comments Inorg Chem 7:41

    Google Scholar 

  225. Sorai M (1988) Kikan Kagaku Sosetsu 3:191

    Google Scholar 

  226. Toftlund H (1989) Coord Chem Rev 94:67

    Google Scholar 

  227. Gütlich P, Hauser A (1989) Pure Appl Chem 61:849

    Google Scholar 

  228. Adler P, Hauser A, Vef A, Spiering H, Gütlich P (1989) Hyperfine Interact 47/48:343

    Google Scholar 

  229. Gütlich P, Hauser A (1990) Coord Chem Rev 97:1

    Google Scholar 

  230. Zarembowitch J, Kahn O (1991) New J Chem 15:181

    Google Scholar 

  231. Kahn O, Kröber J, Jay C (1992) Adv Mater 4:718

    Google Scholar 

  232. Zarembowitch J (1992) New J Chem 16:255

    Google Scholar 

  233. Gütlich P, Hauser A, Spiering H (1994) Angew Chem Int Ed Engl 33:2024

    Google Scholar 

  234. Gütlich P, Jung J (1995) J Mol Struct 347:21

    Google Scholar 

  235. Hauser A (1995) Comments Inorg Chem 17:17

    Google Scholar 

  236. Gütlich P, Jung J, Goodwin HA (1996) Spin transitions in iron(II) complexes—an introduction. In: Coronado E, Delhaès P, Gatteschi D, Miller JS (eds) Molecular magnetism: from molecular assemblies to the devices. NATO ASI Series; Series E: Applied Sciences. Kluwer Academic, The Netherlands, 321:327

    Google Scholar 

  237. Kahn O, Codjovi E, Garcia Y, van Koningsbruggen PJ, Lapouyade R, Sommier L (1996) Spin transition molecular materials for display and data processing. In: Turnbull MM, Sugimoto T, Thompson LK (eds) Molecule-based magnetic materials. ACS Symposium Series 644: American Chemical Society, Washington, DC, p 298

    Google Scholar 

  238. Kahn O, Codjovi E (1996) Phil Trans R Soc London A 354:359

    Google Scholar 

  239. Gütlich P (1997) Mol Cryst Liq Cryst 305:17

    Google Scholar 

  240. Gütlich P, Garcia Y, van Koningsbruggen PJ, Renz F (1999) Photo-magnetism of transition metal complexes. In: Conference contributions for introduction to physical techniques in molecular magnetism (IPTMM’99). Part 1. Structural and magnetic techniques, May 29–June 3, 1999, Yesa (Navarra), Spain, Zaragossa University Press

    Google Scholar 

  241. Gütlich P, Spiering, H, Hauser A (1999) Spin transition in iron(II) compounds. In: Solomon EI, Lever ABP (eds) Inorganic electronic structure and spectroscopy, vol. II. Wiley, New York, p 575

    Google Scholar 

  242. Hauser A, Jeftic J, Romstedt H, Hinek R, Spiering H (1999) Coord Chem Rev 190/192:471

    Google Scholar 

  243. Real JA (1999) Bistability in iron(II) spin crossover systems: a supramolecular function. In: Sauvage JP (ed) Transition metals in supramolecular chemistry. Wiley, p 53

    Google Scholar 

  244. Linert W, Kudryavtsev AB (1999) Coord Chem Rev 192:405

    Google Scholar 

  245. Kahn O, Garcia Y, Létard JF, Mathonière C (1999) Hysteresis and memory effect in supramolecular chemistry. In: Veciana J (ed) Supramolecular engineering of synthetic metallic materials. Kluwer Academic, The Netherlands, p 127

    Google Scholar 

  246. Gütlich P, Garcia Y, Goodwin HA (2000) Chem Soc Rev 29:419

    Google Scholar 

  247. Kahn O (2000) Acc Chem Res 33:647

    Google Scholar 

  248. Turner JW, Schultz FA (2001) Coord Chem Rev 219/221:81

    Google Scholar 

  249. Gütlich P, Garcia Y, Woike T (2001) Coord Chem Rev 219/221:839

    Google Scholar 

  250. Sorai M (2001) Bull Chem Soc Jpn 74:2223

    Google Scholar 

  251. Toftlund H (2001) Monatsh Chem 132:1269

    Google Scholar 

  252. Garcia Y, Ksenofontov V, Gütlich P (2002) Hyperfine Interact 139:543

    Google Scholar 

  253. Ogawa Y, Koshihara S, Takesada M, Ishikawa T (2002) Phase Transit 75:683

    Google Scholar 

  254. Boca R, Linert W (2003) Monatsh Chem 134:199

    Google Scholar 

  255. Gütlich P, Garcia Y, Spiering H (2003) Spin transition phenomena. In: Miller JS, Drillon M (eds) Magnetism: molecules to materials IV. Wiley-VCH, Weinheim, p 271

    Google Scholar 

  256. Real JA, Gaspar AB, Niel V, Muñoz MC (2003) Coord Chem Rev 236:121

    Google Scholar 

  257. Muller RN, Elst LV, Laurent S (2003) J Am Chem Soc 125:8405

    Google Scholar 

  258. Liu XJ, Moritomo Y, Nakamura A, Hirao T, Toyazaki S, Kolima N (2001) J Phys Soc Jpn 70:2521; Nakamoto A, Ono, Y, Kojima N, Matsumura D, Yokoyama T, Liu XJ, Moritomo Y (2003) Syn Met 137:1219

    Google Scholar 

  259. Moliner N, Muñoz MC, Létard S, Salmon L, Tuchagues J-P, Bousseksou A, Real JA (2002) Inorg Chem 41:6997

    Google Scholar 

  260. Gaudry JB, Capes L, Langot P, Marcén S, Kollmannsberger M, Lavastre O, Freysz E, Létard JF, Kahn O (2000) Chem Phys Lett 324:32

    Google Scholar 

  261. Halder GJ, Kepert CJ, Moubaraki B, Murray KS, Cashion JD (2002) Science 298:1762

    Google Scholar 

  262. Galyametdinov Y, Ksenofontov V, Prosvirin A, Ovchinikov I, Ivanova G, Gütlich P, Haase W (2001) Angew Chem Int Ed Engl 40:4269

    Google Scholar 

  263. Sato O (2003) Acc Chem Res 36:692

    Google Scholar 

  264. Sanatsuki Y, Ikuta Y, Matsumoto N, Ohta H, Kojima M, Iijima S, Hayami S, Maeda Y, Kaizaki S, Dahan F, Tuchagues J-P (2003) Angew Chem Int Ed Engl 42:1614

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Philipp Gütlich or Harold A. Goodwin .

Editor information

P. Gütlich H.A. Goodwin

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Gütlich, P., Goodwin, H.A. Spin Crossover—An Overall Perspective. In: Gütlich, P., Goodwin, H. (eds) Spin Crossover in Transition Metal Compounds I. Topics in Current Chemistry, vol 233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b13527

Download citation

  • DOI: https://doi.org/10.1007/b13527

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40394-4

  • Online ISBN: 978-3-540-44981-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics