Skip to main content
Log in

A B3LYP/DFT Study on the Structure Activity Relationship for Benzimidazole Derivatives in Water Solution

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this article, a theoretical chemical study on 41 benzimidazole derivatives compounds used to treat osteoporosis was performed in water phase using density functional theory (DFT) based on the 6-311 basis set and B3LYP method as the level of theory to calculate energetic behavior and quantitative chemical descriptors such as energy gap between HOMO and LUMO, the total energy of different orbital transitions, chemical hardness, softness, electrophilicity index, and electronegativity. The results showed a noticeable difference between the compounds concerning chemical parameters due to substituting the active chemical molecules at the compounds’ R1, R2, R3, and R4 sites. The results showed that compound no. 3 could be considered the most exciting compound due to its unique values obtained. On the other hand, it was found an appropriate relationship between the quantitative arithmetic variables and the IC50 values for each compound. Statistical analysis between the compounds under test and a quantitative descriptor of the ten traits were included to produce two different prediction models based on artificial neural networks due to negative and positive IC50 values after data pre-processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. A. Kanis, C. Cooper, R. Rizzoli, and J. Y. Reginster, Osteopor. Int. 31, 209 (2020). https://doi.org/10.1007/s00198-019-05184-3

    Article  CAS  Google Scholar 

  2. C. Deal, Nat. Clin. Pract. Rheumatol. 5, 20 (2009). https://doi.org/10.1038/ncprheum0977

    Article  CAS  PubMed  Google Scholar 

  3. J. J. Hsu, J. Lu, and S. Umar, J. Am. Physiol.-Heart Circul. Physiol. 314, H1203 (2018). https://doi.org/10.1152/ajpheart.00718.2017

    Article  CAS  Google Scholar 

  4. M. Gerspacher, E. Altmann, R. Beerli, et al., Bioorg. Med. Chem. Lett. 20, 5161 (2010). https://doi.org/10.1016/j.bmcl.2010.07.016

    Article  CAS  PubMed  Google Scholar 

  5. M. Shimizu, H. Noda, E. Joyashiki, C. Nakagawa, K. Asanuma, A. Hayasaka, et al., Biol. Pharm. Bull 39, 625 (2016). https://doi.org/10.1248/bpb.b15-00756

    Article  CAS  PubMed  Google Scholar 

  6. M. Raja, R. R. Muhamed, S. Muthu, and M. Suresh, J. Mol. Struct. 1128, 481 (2017). https://doi.org/10.1016/j.molstruc.2016.09.017

    Article  CAS  Google Scholar 

  7. A. M. Mohamod, M. A. Redayan, and W. B. Ali, J. Phys.: Conf. Ser. 1294, 052012 (2019). https://doi.org/10.1088/1742-6596/1294/5/052012

    Article  CAS  Google Scholar 

  8. B. Kanungo, P. M. Zimmerman, and V. Gavini, Nat. Commun. 10, 1 (2019). https://doi.org/10.1038/s41467-019-12467-0

    Article  CAS  Google Scholar 

  9. Ahmed Hassen Shntaif, Z. M. Rashid, Z. H. Al-Sawaff, and F. Kandemirli, Russ. J. Bioorg. Chem. 47, 777 (2021). https://doi.org/10.1134/S106816202103016X

    Article  CAS  Google Scholar 

  10. H. Aman, N. Rashid, Z. Ashraf, A. Bibi, et al., Heliyon 6, e05187 (2020). https://doi.org/10.1016/j.heliyon.2020.e05187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Z. H. Al-Sawaff, H. S. Sayiner, and F. Kandemirli, J. Amasya Univ. Inst. Sci. Technol. 1, 1 (2020). https://dergipark.org.tr/en/pub/jauist/issue/55760/739466

  12. M. Erol, I. Celik, O. Temiz Arpaci, H. Goker, F. Kaynak Onurdag, and S. Okten, New J. Chem. 44, 21309 (2020). https://doi.org/10.1039/d0nj01899f

    Article  CAS  Google Scholar 

  13. M. Shimizu, H. Noda, E. Joyashiki, C. Nakagawa, K. Asanuma, A. Hayasaka, and T. Tamura, Biol. Pharm. Bull. 39, 625 (2016). https://doi.org/10.1248/bpb.b15-00756

    Article  CAS  PubMed  Google Scholar 

  14. M. Şenğül Alpater, Z. H. Al-Sawaff, and F. Kandemirli, Glob. J. Eng. Technol. Adv. 9 (3), 077 (2021). https://doi.org/10.30574/gjeta.2021.9.3.0166

  15. G. S. Kandemirli, M. İzzettin Yilmazer, F. Kandemirli, and M. Saraçoğlu, Erciyes Univ. J. Inst. Sci. Technol. 36, 443 (2020). https://dergipark.org.tr/tr/pub/erciyesfen/issue/59314/680458

    Google Scholar 

  16. H. Abdiulrsool and F. Lafy, Russ. J. Phys. Chem. B 15, S1 (2021). https://doi.org/10.1134/S1990793121090025

    Article  Google Scholar 

  17. B. Ariche, A. Rahmouni, H. Brahim, A. Guendouzi, and K. Alali, J. Appl. Solution Chem. Model. 2, 216 (2013). https://doi.org/10.6000/1929-5030.2013.02.04.2

    Article  CAS  Google Scholar 

  18. A. Klamt, C. Moya, and J. J. Palomar, Chem. Theory Comput. 11, 4220 (2015). https://doi.org/10.1021/acs.jctc.5b00601

    Article  CAS  Google Scholar 

  19. K. F. Khaled, Electrochim. Acta 55, 6523 (2010). https://doi.org/10.1016/j.electacta.2010.06.027

    Article  CAS  Google Scholar 

  20. M. J. S. Dewar and W. J. Thiel, Chem. Soc. 99, 4899 (1977). https://doi.org/10.1021/ja00457a004

    Article  CAS  Google Scholar 

  21. R. G. Pearson, Coord. Chem. Rev. 100, 403 (1990). https://doi.org/10.1016/0010-8545(90)85016-L

    Article  CAS  Google Scholar 

  22. C. K. Ingold, Nature (London, U.K.) 145 (3678), 644 (1940). https://doi.org/10.1038/145644b0

    Article  Google Scholar 

  23. R. G. Parr and R. G. Pearson, Chem. Soc. 105, 7512 (1983). https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  24. S. Kaya, C. Kaya, L. Guo, et al., J. Mol. Liq. 219, 497 (2016). https://doi.org/10.1016/j.molliq.2016.03.042

    Article  CAS  Google Scholar 

  25. P. K. Chattaraj, U. Sarkar, and D. R. Roy, Chem. Rev. 106, 2065 (2006). https://doi.org/10.1021/cr040109f

    Article  CAS  PubMed  Google Scholar 

  26. Feride Akman, Russ. J. Phys. Chem. B 15, 517 (2021). https://doi.org/10.1134/S1990793121030027

    Article  Google Scholar 

  27. P. Sharma, A. Kumar, J. Singh, and V. Sahu, Chin. J. Chem. 27, 868 (2009). https://doi.org/10.1002/cjoc.200990146

    Article  CAS  Google Scholar 

  28. S. Kumar, Surbhi, and M. K. Yadav, Russ. J. Phys. Chem. B 12, 383 (2018). https://doi.org/10.1134/S1990793118030132

    Article  CAS  Google Scholar 

  29. R. Delgado, M. C. Hernández, V. Casado, et al., J. Mol. Struct. 651–653, 151 (2003). https://doi.org/10.1016/S0022-2860(02)00644-0

    Article  CAS  Google Scholar 

  30. Sarvendra Kumar, Surbhi, and M. K. Yadav, Russ. J. Phys. Chem. B 15 (Suppl. 1), S22 (2021). https://doi.org/10.1134/S1990793121090116

    Article  Google Scholar 

  31. R. G. Pearson, J. Am. Chem. Soc. 85, 3533 (1963). https://doi.org/10.1021/ja00905a001

    Article  CAS  Google Scholar 

  32. S. U. D. Shamim, T. Hussain, et al., J. Mol. Model. 26 (6), 153 (2020). https://doi.org/10.1007/s00894-020-04419-z

    Article  CAS  PubMed  Google Scholar 

  33. Z. Al-Sawaff, S. Dalgic, and F. Kandemirli, Eur. J. Chem. 12, 314 (2021). https://doi.org/10.5155/eurjchem.12.3.314-322.2143

    Article  CAS  Google Scholar 

  34. V. T. Muttannavar, R. Melavanki, P. Bhavya, et al., Int. J. Pharma Bio Sci. 8 (3), 24 (2018). https://doi.org/10.22376/ijpbs/lpr.2018.8.3.l24-30

    Article  CAS  Google Scholar 

  35. M. S. Safronova, J. Mitroy, C. W. Clark, and M. G. Kozlov, AIP Conf. Proc. 1642, 81 (2015). https://doi.org/10.1063/1.4906633

    Article  Google Scholar 

  36. M. F. Khan, R. Rashid, M. S. Rahman, et al., Bangladesh Pharm. J. 19, 9 (2016). https://doi.org/10.3329/bpj.v19i1.29229

    Article  Google Scholar 

  37. M. Evecen, H. Tanak, A. A. Ağar, S. Meral, and N. Özdemir, Optik 228, 166133 (2021). https://doi.org/10.1016/J.IJLEO.2020.166133

    Article  CAS  Google Scholar 

  38. S. G. Kandemirli, F. Genç, F. Kandemirli, and M. Evecen, Eur. J. Sci. Technol. 20, 351 (2020). https://doi.org/10.31590/ejosat.732239

    Article  Google Scholar 

  39. T. Beena, L. Sudha, A. Nataraj, V. Balachandran, D. Kannan, and M. N. Ponnuswamy, Chem. Centr. J. 11, 1 (2017). https://doi.org/10.1186/s13065-016-0230-8

    Article  CAS  Google Scholar 

  40. M. Evecen and H. Tanak, Appl. Phys. A: Mater. Sci. Proc. 123, 2 (2017). https://doi.org/10.1007/s00339-016-0693-4

    Article  CAS  Google Scholar 

  41. M. M. Haider, N. Alam, M. Ibn Bashar, and S. Helleringer, Genus 77, 13 (2021). https://doi.org/10.1186/s41118-021-00125-7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. H. Al-Sawaff or F. Kandemirli.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Sawaff, Z.H., Basaran, M.A. & Kandemirli, F. A B3LYP/DFT Study on the Structure Activity Relationship for Benzimidazole Derivatives in Water Solution. Russ. J. Phys. Chem. B 16, 579–589 (2022). https://doi.org/10.1134/S1990793122040030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122040030

Keywords:

Navigation