Skip to main content
Log in

Theoretical investigation of the molecular structure and spectroscopic properties of oxicams

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most frequently prescribed drugs and have multiple therapeutic uses. These drugs are predominantly used for the treatment of musculoskeletal diseases because of their analgesic, antipyretic, and antiplatelet activities. Oxicams constitute an interesting class of organic compounds and have been investigated in the search for new analgesic and anti-inflammatory drugs. In the present work, a theoretical investigation of the molecular structure and spectroscopic properties of a series of five oxicams in different solvents was performed using density functional theory (DFT) methods. The geometric optimizations of the oxicams were carried out using the M06 density functional and the CBSB7 basis set. The infrared data were all obtained at the same theoretical level. The UV-Vis absorption and NMR data of some oxicams were calculated using the DFT and CBSB3 basis sets. The analysis of structural parameters, particularly the bond length and spectroscopic data, indicated that interactions occurred between the hydrogen bond types for 4-meloxicam, isoxicam, and normeloxicam. Stereoelectronic interactions caused by the substitution of alkyl groups caused the bond lengths to elongate. Similarly, the substitution of heteroatoms, such as nitrogen, sulfur, or oxygen, increased the bond lengths and angular stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Cronstein and G. Weissmann, Annu. Rev. Pharmacol. Toxicol., 35, 449 (1995).

    Article  CAS  Google Scholar 

  2. E. Lazer, C. Miao, C. Cywin, R. Sorcek, H. Wong, Z. Meng, I. Potocki, M. Hoermann, R. Snow, M. Tschantz, T. Kelly, D. McNeil, S. Coutts, L. Churchill, A. Graham, E. David, P. Grob, W. Engel, H. Meier, and G. Trummlitz, J. Med. Chem., 40, 980 (1997).

    Article  CAS  Google Scholar 

  3. M. Bianchi and A. Panerai, Pharmacol. Res., 45, 101 (2002).

    Article  CAS  Google Scholar 

  4. J. Dogn′e, C. Supur′an, and D. Pratico, J. Med. Chem., 48, 2251 (2005).

    Article  Google Scholar 

  5. J. Ho, M. L. Coote, M. Franco-Perez, and R. Gomez-Balderas, J. Phys. Chem. A, 11992, 114 (2010).

    Google Scholar 

  6. M. Lúcio, H. Ferreira, J. L. F. C. Lima, and S. Reis, Med. Chem., 447, 2 (2006).

    Google Scholar 

  7. J. Martínez-Araya, G. Salgado-Moran, and D. Glossman-Mitnik, J. Phys. Chem. B, 6339, 117 (2013).

    Google Scholar 

  8. G. Salgado-Moran, L. Gerli-Candia, J. Martinez-Araya, R. Ramirez-Tagle, and D. Glossman-Mitnik, Int. J. Pharm. Bio. Sci., 374, 4 (2013).

    Google Scholar 

  9. A. Ghaempanah, S. Jameh-Bozorghi, M. Darvishpour, and M. H. Fekri, Int. J. Electrochem. Sci., 6127, 7 (2012).

    Google Scholar 

  10. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, H. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Bu-rant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, A. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.1., Program for Quantum Chemical Calculations, Gaussian Inc., Wallingford, CT (2009).

    Google Scholar 

  11. Y. Zhao and D. G. Truhlar, Acc. Chem. Res., 41, 157 (2008).

    Article  CAS  Google Scholar 

  12. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 120, 215 (2008).

    Article  CAS  Google Scholar 

  13. Y. Zhao and D. G. Truhlar, Chem. Phys. Lett., 502, 1 (2011).

    Article  CAS  Google Scholar 

  14. J. Montgomery, M. Frisch, J. Ochterski, and G. Petersson, J. Chem. Phys., 110, 2822 (1999).

    Article  CAS  Google Scholar 

  15. J. Montgomery, M. Frisch, J. Ochterski, and G. Petersson, J. Chem. Phys., 112, 6532 (2000).

    Article  CAS  Google Scholar 

  16. J. Tomasi, B. Mennucci, and E. Cances, J. Mol. Struct.: THEOCHEM, 464, 211 (1999).

    Article  CAS  Google Scholar 

  17. V. N. Emel′yanenko, S. P. Verevkin, E. N. Burakova, G. N. Roganov, and M. K. Georgieva, Russ. J. Phys. Chem. A, 83, 697 (2009).

    Google Scholar 

  18. E. Lewars, Computational Chemistry–Introduction to the Theory and Applications of Molecular and Quantum Mechanics, Kluwer Academic Publishers, Dordrecht (2003).

    Google Scholar 

  19. R. Stratmann, G. Scuseria, and M. Frisch, J. Chem. Phys., 109, 8218 (1998).

    Article  CAS  Google Scholar 

  20. R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 256, 454 (1996).

    Article  CAS  Google Scholar 

  21. M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys., 108, 4439 (1998).

    Article  CAS  Google Scholar 

  22. Swizard Program Revision 4.6. Program for Postprocessing of Spectral Data, University of Ottawa, Canada (2010).

  23. S. Gorelsky and A. Lever, J. Organomet. Chem., 635, 187 (2001).

    Article  CAS  Google Scholar 

  24. A. Allouche, J. Comput. Chem., 32, 174 (2011).

    Article  CAS  Google Scholar 

  25. A. Ghaenpanah, S. Jameh-Bozorghi, M. Darvisshpour, and M. Fekri, Int. J. Electrochem. Sci., 7, 6127 (2012).

    Google Scholar 

  26. R. Banerjee, H. Chakraborty, and M. Sarkar, Spectrochim. Acta, Part A, 59, 1213 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramírez-Tagle.

Additional information

Original Russian Text © 2017 A. G. Pacheco, G. Salgado-Morán, L. Gerli-Candia, R. Ramírez-Tagle, D. Glossman-Mitnik, A. Misra, A. F. de Carvalho Alcântara.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 58, No. 2, pp. 278–284, February–March, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacheco, A.G., Salgado-Morán, G., Gerli-Candia, L. et al. Theoretical investigation of the molecular structure and spectroscopic properties of oxicams. J Struct Chem 58, 261–267 (2017). https://doi.org/10.1134/S0022476617020068

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617020068

Keywords

Navigation