Skip to main content
Log in

Theoretical Study of Octreotide Derivatives as Anti-Cancer Drugs using QSAR, Monte Carlo Method and formation of Complexes

  • CHEMICAL PHYSICS OF BIOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

QSAR investigations of a series of 25 Octreotide drugs were performed using multiple linear regression (MLR) and artificial neural network (ANN) as modelling tools and simulated annealing (SA) and genetic algorithm (GA) as optimization methods. The obtained results were compared with each other and with the results of MLR–MLR approach in terms of correlation coefficient (R2) and root mean of square error (RMSE), from which the ANN–GA was found to be the best scheme. It was revealed that the activity of derivatives of Octreotide drugs depends majorly on HATS7v, SIC5, Mor24u, RDF010m, EEig06r, E1u, EEig02× descriptors in gas phase. The best Octreotide derivative (according to –log IC50) was exposed to reaction with Cu, Zn, Fe using B3lyp/lanl2dz to investigate the stability of the formed complexes, from which the copper complex was perceived to be the most stable one. In addition, CORAL software was employed to study the derivatives using the Monte Carlo method and correlation coefficient, cross-validated correlation coefficient and standard error of the model were checked out. It was concluded that simultaneous utilization of QSAR and Monte Carlo method can lead to a more comprehensive understanding of the relation between physicochemical, structural and theoretical molecular descriptors of drugs to their biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Lelle, S. Kaloyanova, C. Freidel, et al., Mol. Pharm. 12, 1 (2015).

    Article  Google Scholar 

  2. I. M. Modlin, M. Pavel, M. Kidd, and B. I. Gustafsson, Aliment. Pharm. Ther. 31, 169 (2010).

    CAS  Google Scholar 

  3. P. Hovind, L. Simonsen, and J. Bülow, Clin. Physiol. Funct. Imaging 30, 141 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. M. T. Keegan, Pharmacology and Physiology for Anesthesia, 2nd ed. (Elsevier, Amsterdam, 2019).

    Google Scholar 

  5. S. Kirkpatrick, Jr., C. D. Gelatt, and M. P. Vecchi, Science (Washington, DC, U. S.) 220, 671 (1983).

    Article  CAS  Google Scholar 

  6. V. O. Černý, J. Optim. Theory Appl. 45, 41 (1985).

    Article  Google Scholar 

  7. L. M. Schmitt, Theor. Comput. Sci. 259, 1 (2001).

    Article  Google Scholar 

  8. D. Bertsimas and J. Tsitsiklis, Stat. Sci. 8, 10 (1983).

    Google Scholar 

  9. D. A. Winkler, Brief. Bioinform 3, 73 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. E. Tanış, N. Çankaya, and S. Yalçın, Russ. J. Phys. Chem. B 13, 49 (2019).

    Article  Google Scholar 

  11. A. P. Toropova, A. A. Toropov, E. Benfenati, G. Gini, D. Leszczynska, and J. Leszczynski, J. Comput. Chem. 32, 2727 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. I. Iakovidis, I. Delimaris, M. Stylianos, and M. Piperakis, Mol. Biol. Int. 20, 1 (2011).

    Article  Google Scholar 

  13. https://pubchem.ncbi.nlm.nih.gov/.

  14. F. Kalantari Fotooh and M. Atashparvar, Russ. J. Phys. Chem. B 3, 1 (2019).

    Article  Google Scholar 

  15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009). https://gaussian.com/glossary/g09/.

  16. J. H. Schuur, P. Selzer, and J. Gasteiger, J. Chem. Inf. Comput. Sci. 36, 334 (1996).

    Article  CAS  Google Scholar 

  17. R. Todeschini and V. Consonni, Handbook of Molecular Descriptors (Wiley-VCH, Weinheim, 2000).

    Book  Google Scholar 

  18. M. C. Hemmer, V. Steinhauer, and J. Gasteiger, J. Vibr. Spectrosc. 19, 151 (1999).

    CAS  Google Scholar 

  19. V. Consonni, R. Todeschini, and R. Pavan, J. Chem. Inf. Comput. Sci. 42, 682 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. V. Consonni, R. Todeschini, M. Pavan, and P. Gramatica, J. Chem. Inf. Comput. Sci. 42, 693 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. P. Gramatica, V. Consonni, and R. Todeschini, Chemosphere 38, 1371 (1998).

    Article  Google Scholar 

  22. P. Gramatica, V. Consonni, and R. Todeschini, Chemosphere 41, 763 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. SPSS, Version 19. http://www.spssscience.com. Accessed 2010.

  24. M. H. Fatemi and S. Gharaghani, Bioorg. Med. Chem. 15, 7746 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. K. Levenberg, Q. Appl. Math. 2, 164 (1944).

    Article  Google Scholar 

  26. M. Jalali-Heravi and M. F. Parastar, J. Chem. Inf. Comput. Sci. 40, 147 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. A. Mauri, V. Consonni, M. Pavan, and R. Todeschini, MATCH. Commun. Math. Comput. Chem. 56, 237 (2006).

    CAS  Google Scholar 

  28. MatLab, 2014a. Matlab: The Language of Technical Computing. https://ch.mathworks.com/products/matlab.html.

  29. http://www.insilico.eu/coral.

  30. O. G. Maksimova and A. V. Maksimov, Russ. J. Phys. Chem. B 11, 15 (2017).

    Article  CAS  Google Scholar 

  31. A. M. Veselinovic, A. A. Toropov, A. P. Toropova, I. Damnjanovic, and G. M. Nikolic, Sci. J. Fac. Med. Niš 31, 95 (2014).

  32. https://cactus.nci.nih.gov/translate/.

  33. SMILES Tutorial: What is SMILES? (U. S. Environ. Protect. Agency, 2012).

  34. R. SayyadikordAbadi, A. Alizadehdakhel, and S. Tajadodi Paskiabei, J. Korean Chem. Soc. 60, 225 (2016).

    Article  Google Scholar 

  35. R. Sayyadikord Abadi and A. Alizadehdakhel, Rev. Roum. Chim. 63, 171 (2018).

    Google Scholar 

  36. R. Sayyadikord Abadi, A. Alizadehdakhel, and S. Dorani Shiraz, Russ. J. Phys. Chem. B 11, 307 (2017).

    Article  CAS  Google Scholar 

  37. Yu. M. Sivergin, S. M. Kireeva, and S. M. Usmanov, Russ. J. Phys. Chem. B 9, 952 (2015).

    Article  CAS  Google Scholar 

  38. A. Kumar and S. Chauhan, SAR QSAR Environ. Res. 28, 179 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. A. Pal, B. Biswas, S. K. Mondal, C.-H. Lin, and R. Ghosh, Polyhedron 31, 671 (2012).

    Article  CAS  Google Scholar 

  40. T. S. Lobana, G. Singh, and T. Nishioka, J. Coord. Chem. 57, 955 (2004).

    Article  CAS  Google Scholar 

  41. G. T. King and N. E. Miller, J. Inorg. Chem. 25, 4309 (1986).

    Article  CAS  Google Scholar 

  42. D. Chen and L. Powers, J. Inorg. Biochem. 58, 245 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. C. Marzano, M. Pellei, F. Tisato, and C. Santini, Anti-Cancer Agents Med. Chem. 9, 185 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The support for this study provided by the Islamic Azad University of Rasht and University of Guilan are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sayyadikord Abadi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayyadikord Abadi, R., Shojaei, A.F., Tatafei, F.E. et al. Theoretical Study of Octreotide Derivatives as Anti-Cancer Drugs using QSAR, Monte Carlo Method and formation of Complexes. Russ. J. Phys. Chem. B 16, 127–137 (2022). https://doi.org/10.1134/S199079312201002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079312201002X

Keywords:

Navigation