Skip to main content
Log in

Preparation, Physicochemical and Rheological Studies of Stimuli-Responsive Biodegradable Polymer Gels

  • CHEMICAL PHYSICS OF POLYMER MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The preparation, characterization and detailed physicochemical investigation on sol-gel behaviour of poly(N-isopropyl acrylamide)-chitosan-poly(Acrylic acid) [PNIPAAm-CS-PAA] based polymeric microgels prepared by free-radical polymerization are discussed in this manuscript. The redox initiator Ammonium per sulphate (APS) was used to initiate the reactions while N,N'-Methylenebisacrylamide (MBA) as a crosslinking agent. The polymeric microgels were then subjected to characterization and physicochemical study via using UV-Visible spectroscopy, infrared spectroscopy (FT-IR), laser light scattering (LLS), Ostwald viscometry, dynamic rheology and swelling measurement. The successful preparation of microgels was traced from the result of UV-Visible and FT-IR. The effect of external stimuli like temperature and pH, or both, on the behaviour of polymeric microgels was investigated through visual stability test, laser light scattering and rheological measurement. Similarly, the physicochemical behaviour of the microgels was also investigated in terms of the chemical composition of three different samples. The swelling/change in size of the microgel samples in aqueous media at different pH and temperature, in the terms of hydrodynamic radius (Rh), were drawn through LLS measurements. From the Rheological measurements, various physiochemical properties such as, elasticity, viscosity, shear stress, storage modulus, loss modulus, phase angle and complex viscosity of the microgels were deduced. From the analysis of Ostwald viscometry the flow viscosity of microgels was deduced at different pH and temperatures. It was found that various experimental variables appreciably influenced the properties of polymeric microgels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. J. Wu, Q. Zhao, C. Liang, and T. Xie, Soft. Matter 9, 11136 (2013).

    Article  CAS  Google Scholar 

  2. P. M. Kharkar, K. L. Kiick, and A. M. Kloxin, Chem. Soc. Rev. 42, 7335 (2013).

    Article  CAS  Google Scholar 

  3. A. S. Shurshina, A. R. Galina, and E. I. Kulish, Russ. J. Phys. Chem., B 10, 1001 (2016).

    CAS  Google Scholar 

  4. T. Tan and K. G. Marra, Materials 3, 1746 (2010).

    Article  CAS  Google Scholar 

  5. A. E. Lazhko, K. N. Bardakova, B. S. Shavkuta, S. N. Churbanov, M. A. Markov, T. A. Akopova, O. O. Parenago, A. M. Grigoryev, P. S. Timashev, V. V. Lunin, and V. N. Bagratashvili, Russ. J. Phys. Chem. B 12, 1144 (2018).

    Article  CAS  Google Scholar 

  6. T. M. Don, M. L. Huang, A. C. Chiu, et al., Mater. Chem. Phys. 107, 266 (2008).

    Article  CAS  Google Scholar 

  7. M. Ebara, Y. Kotsuchibashi, R. Narain, et al., Smart Biomaterials (Springer, Japan, 2014).

    Book  Google Scholar 

  8. K. Khezri and H. Mahdavi, Z. Phys. Chem. 230, 1499 (2016).

    Article  CAS  Google Scholar 

  9. Z. H. Farooqi, R. Begum, K. Naseem, U. Rubab, M. Usman, A. Khan, and A. Ijaz, Russ. J. Phys. Chem. A 90, 2600 (2016).

    Article  CAS  Google Scholar 

  10. N. A. Valchuk, O. S. Brovko, I. A. Palamarchuk, T. A. Boitsova, K. G. Bogolitsyn, A. D. Ivakhnov, D. G. Chukhchin, and N. I. Bogdanovich, Russ. J. Phys. Chem. B 13, 1121 (2019).

    Article  CAS  Google Scholar 

  11. S. Z. M. Rasib, Z. Ahmad, A. Khan, et al., Int. J. Biol. Macromol. 108, 367 (2018).

    Article  CAS  Google Scholar 

  12. L. Z. Rogovina and V. G. Vasil’ev, Polym. Sci., Ser. A 52, 1171 (2010).

    Article  Google Scholar 

  13. A. Khan, M. B. H. Othman, B. P. Chang, and H. M. Akil, Iran. Polym. J. 24, 317 (2015).

    Article  CAS  Google Scholar 

  14. H. Feil, Y. H. Bae, J. Feijen, and S. W. Kim, Macromolecules 25, 5528 (1992).

    Article  CAS  Google Scholar 

  15. P. M. Xulu, G. Filipcsei, and M. Zrínyi, Macromolecules 33, 1716 (2000).

    Article  CAS  Google Scholar 

  16. K. Khezri, H. Alijani, and Y. Fazli, Z. Phys. Chem. 230, 111 (2016).

    Article  CAS  Google Scholar 

  17. K. Asaka and K. Oguro, J. Electroanal. Chem. 480, 186 (2000).

    Article  CAS  Google Scholar 

  18. L. Ionov, A. Sidorenko, M. Stamm, et al., Macromolecules 37, 7421 (2004).

    Article  CAS  Google Scholar 

  19. S. Edmondson, V. Osborne, and W. Huck, Chem. Soc. Rev. 33, 14 (2004).

    Article  CAS  Google Scholar 

  20. T. Miyata, T. Uragami, and K. Nakamae, Adv. Drug. Deliv. Rev. 54, 79 (2002).

    Article  CAS  Google Scholar 

  21. L. A. Shah, R. Javed, A. Khan, et al., Z. Phys. Chem. 233, 1145 (2019).

    Article  CAS  Google Scholar 

  22. T. J. Sanborn, P. B. Messersmith, and A. E. Barron, Biomaterials 23, 2703 (2002).

    Article  CAS  Google Scholar 

  23. K. Y. Lee, Macromol. Res. 15, 195 (2007).

    Article  CAS  Google Scholar 

  24. A. Khan, M. Sajjad, E. Khan, H. M. Akil, L. A. Shah, and Z. H. Farooqi, J. Polym. Res. 24, 170 (2017).

    Article  Google Scholar 

  25. Y. Liu and Y. Cui, Polym. Int. 60, 1117 (2011).

    Article  CAS  Google Scholar 

  26. H. Jung, M.-K. Jang, J.-W. Nah, and Y.-B. Kim, Macromol. Res. 17, 265 (2009).

    Article  CAS  Google Scholar 

  27. M. V. Bazunova, A. S. Shurshina, V. V. Chernova, and E. I. Kulish, Russ. J. Phys. Chem. B 10, 1014 (2016).

    Article  CAS  Google Scholar 

  28. M. N. do-Nascimento, P. S. Curti, M. A. M. da Silva, and R. D. C. Balaban, J. Appl. Polym. Sci. 129, 334 (2013).

    Article  Google Scholar 

  29. C. F. Lee, C. J. Wen, C. L. Lin, and W. Y. Chiu, J. Polym. Sci. A 42, 3029 (2004).

    Article  CAS  Google Scholar 

  30. W. F. Lee and Y. J. Chen, J. Appl. Polym. Sci. 82, 2487 (2001).

    Article  CAS  Google Scholar 

  31. C.-H. Huang, C.-F. Wang, T.-M. Don, and W.-Y. Chiu, Cellulose 20, 1791 (2013).

    Article  CAS  Google Scholar 

  32. S. C. R. Gandra, PhD Thesis (Univ. Toledo, 2013).

  33. N.-E. Angar and D. Aliouche, J. Polym. Sci., A 58, 541 (2016).

    Article  CAS  Google Scholar 

  34. R. P. Dumitriu, G. P. Mitchell, and C. Vasile, Polym. Int. 60, 1398 (2011).

    Article  CAS  Google Scholar 

  35. M. V. Dinu, S. Schwarz, I. A. Dinu, and E. S. Drăgan, Colloid. Polym. Sci. 290, 1647 (2012).

    Article  CAS  Google Scholar 

  36. J. Zhang, L.-Y. Chu, Y.-K. Li, and Y. M. Lee, Polymer 48, 1718 (2007).

    Article  CAS  Google Scholar 

  37. M. Prabaharan and J. F. Mano, Macromol. Biosci. 6, 991 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas Khan, Sajjad, M., Shah, L.A. et al. Preparation, Physicochemical and Rheological Studies of Stimuli-Responsive Biodegradable Polymer Gels. Russ. J. Phys. Chem. B 15 (Suppl 1), S109–S119 (2021). https://doi.org/10.1134/S1990793121090104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121090104

Keywords:

Navigation