Skip to main content
Log in

Comparative rheological study of ionic semi-IPN composite hydrogels based on polyacrylamide and dextran sulphate and of polyacrylamide hydrogels

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Ionic semi-interpenetrating polymer networks composite hydrogels were synthesized by free-radical polymerization using dextran sulphate (DxS), acrylamide as monomer and N,N′-methylene(bis)acrylamide as cross-linking agent. The viscoelastic properties of these composite hydrogels were investigated by oscillatory shear measurements under small deformation conditions comparative with those of polyacrylamide gels. Changes of the rheological properties of composite hydrogels have been studied in terms of polymerization temperature, cross-linker ratio, initial monomer concentration and molar mass of DxS. The results showed that the stability of the composite hydrogels obtained at room temperature (22 °C) was relatively low because the storage modulus (G′) was only eight times higher than the loss modulus (G″), while for those obtained by cryopolymerization (−18 °C), the stability was improved, the G′ values being about 30 times higher than those of G″. This behaviour indicated that, by conducting the synthesis of hydrogels below the freezing point of the reaction solutions, an enhancement of the hydrogels elasticity was achieved. The network parameters, i.e. the average molecular weight between two cross-links and the cross-link density of the composite hydrogels prepared at −18 °C, were estimated from rheological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guiseppi-Elie A (2010) Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31:2701–2716. doi:10.1016/j.biomaterials.2009.12.052

    Article  CAS  Google Scholar 

  2. Rokhade AP, Patil SA, Aminabhavi TM (2007) Synthesis and characterization of semi-interpenetrating polymer network microspheres of acrylamide grafted dextran and chitosan for controlled release of acyclovir. Carbohydr Polym 67:605–613. doi:10.1016/j.carbpol.2006.07.001

    Article  CAS  Google Scholar 

  3. Lozinsky VI (2008) Polymeric cryogels as a new family of macroporous and supermacroporous materials for biotechnological purposes. Russ Chem Bull Int Ed 57:1015–1032. doi:10.1007/s11172-008-0131-7

    Article  CAS  Google Scholar 

  4. Dinu MV, Perju MM, Drăgan ES (2011) Porous semi-interpenetrating hydrogel networks based on dextran and polyacrylamide with superfast responsiveness. Macromol Chem Phys 212:240–251. doi:10.1002/macp.201000519

    Article  CAS  Google Scholar 

  5. Dinu MV, Perju MM, Drăgan ES (2011) Composite IPN ionic hydrogels based on polyacrylamide and dextran sulphate. React Funct Polym 71:881–890. doi:10.1016/j.reactfunctpolym.2011.05.010

    Article  CAS  Google Scholar 

  6. Drăgan ES, Perju MM, Dinu MV (2012) Preparation and characterization of IPN composite hydrogels based on polyacrylamide and chitosan and their interaction with ionic dyes. Carbohydr Polym 88:270–281. doi:10.1016/j.carbpol.2011.12.002

    Article  Google Scholar 

  7. Myung D, Waters D, Wiseman M, Duhamel PE, Noolandi J, Ta CN, Frank CW (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657. doi:10.1002/pat.1134

    Article  CAS  Google Scholar 

  8. Sperling LH (1994) Interpenetrating polymer networks: an overview. In: Klempner D, Sperling LH, Utracki LA (eds) Interpenetrating polymer networks. American Chemical Society, Washington, pp 3–38

    Chapter  Google Scholar 

  9. Janovák L, Varga J, Kemény L, Dékány I (2008) Investigation of the structure and swelling of poly(N-isopropyl-acrylamide-acrylamide) and poly(N-isopropyl-acrylamide-acrylic acid) based copolymer and composite hydrogels. Colloid Polym Sci 286:1575–1585. doi:10.1007/s00396-008-1933-8

    Article  Google Scholar 

  10. Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382. doi:0148-6055/86/020367-16

    Article  CAS  Google Scholar 

  11. Zhou C, Wu Q, Zhang Q (2010) Dynamic rheology studies of in situ polymerization process of polyacrylamide–cellulose nanocrystal composite hydrogels. Colloid Polym Sci 289:247–255. doi:10.1007/s00396-010-2342-3

    Article  Google Scholar 

  12. Martinez-Ruvalcaba A, Chornet E, Rodrigue D (2007) Viscoelastic properties of dispersed chitosan/xanthan hydrogels. Carbohydr Polym 67:586–595. doi:10.1016/j.carbpol.2006.06.033

    Article  CAS  Google Scholar 

  13. Huynh CT, Nguyen MK, Huynh DP, Sung Lee D (2011) Biodegradable star-shaped poly(ethylene glycol)-poly(β-amino ester) cationic pH/temperature-sensitive copolymer hydrogels. Colloid Polym Sci 289:301–308. doi:10.1007/s00396-010-2349-9

    Article  CAS  Google Scholar 

  14. Li Z, Ngai T (2011) Stimuli-responsive gel emulsions stabilized by microgel particles. Colloid Polym Sci 289:489–496. doi:10.1007/s00396-010-2362-z

    Article  CAS  Google Scholar 

  15. Lally S, Freemont TJ, Cellesi F, Saunders BR (2011) pH-responsive microgels containing hydrophilic crosslinking co-monomers: shell-exploding microgels through design. Colloid Polym Sci 289:647–658. doi:10.1007/s00396-010-2366-8

    Article  CAS  Google Scholar 

  16. Trompette JL, Fabregue E, Cassanas G (1997) Influence of the monomer properties on the rheological behavior of chemically crosslinked hydrogels. J Polym Sci, Part B: Polym Phys 35:2535–2541. doi:10.1122/1.3003054

    Article  CAS  Google Scholar 

  17. Jiang H, Su W, Mathera PT, Bunning TJ (1999) Rheology of highly swollen chitosan/polyacrylate hydrogels. Polymer 40:4593–4602. doi:10.1016/S0032-3861(99)00070-1

    Article  CAS  Google Scholar 

  18. Khalid MN, Agnely F, Yagoubi N, Grossiord JL, Couarraze G (2002) Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks. Eur J Pharm Sci 15:425–432. doi:10.1016/S0928-0987(02)00029-5

    Article  CAS  Google Scholar 

  19. Zhao S, Cao M, Li H, Li L, Xu W (2010) Synthesis and characterization of thermo-sensitive semi-IPN hydrogels based on poly(ethylene glycol)-co-poly(e-caprolactone) macromer, N-isopropylacrylamide, and sodium alginate. Carbohydr Res 345:425–431. doi:10.1016/j.carres.2009.11.014

    Article  CAS  Google Scholar 

  20. Dinu MV, Ozmen MM, Dragan ES, Okay O (2007) Freezing as a path to build macroporous structures: superfast responsive polyacrylamide hydrogels. Polymer 48:195–204. doi:10.1016/j.polymer.2006.11.022

    Article  CAS  Google Scholar 

  21. Lawal OS, Storz J, Storz H, Lohmann D, Lechner D, Kulicke WM (2009) Hydrogels based on carboxymethyl cassava starch cross-linked with di- or polyfunctional carboxylic acids: synthesis, water absorbent behavior and rheological characterizations. Eur Polym J 45:3399–3408. doi:10.1016/j.eurpolymj.2009.09.019

    Article  CAS  Google Scholar 

  22. Smith TJ, Kennedy JE, Higginbotham CL (2009) The rheological and thermal characteristics of freeze-thawed hydrogels containing hydrogen peroxide for potential wound healing applications. J Mech Behav Biomed Mat 2:264–271. doi:10.1016/j.jmbbm.2008.10.003

    Article  Google Scholar 

  23. Petrov P, Petrova E, Stamenova R, Tsvetanov CB, Riess G (2006) Cryogels of cellulose derivatives prepared via UV irradiation of moderately frozen systems. Polymer 47:6481–6484. doi:10.1016/j.polymer.2006.07.047

    Article  CAS  Google Scholar 

  24. Yang X, Liu Q, Chen X, Yu F, Zhu Z (2008) Investigation of PVA/ws-chitosan hydrogels prepared by combined c-irradiation and freeze-thawing. Carbohydr Polym 73:401–408. doi:10.1016/j.carbpol.2007.12.008

    Article  CAS  Google Scholar 

  25. Zhao Q, Sun J, Wu X, Lin Y (2011) Macroporous double-network cryogels: formation mechanism, enhanced mechanical strength and temperature/pH dual sensitivity. Soft Matter 7:4284–4293. doi:10.1039/c0sm01407a

    Article  CAS  Google Scholar 

  26. Calvet D, Wong JY, Giasson S (2004) Rheological monitoring of polyacrylamide gelation: importance of cross-link density and temperature. Macromolecules 37:7762–7771. doi:10.1021/Ma049072r

    Article  CAS  Google Scholar 

  27. Giannouli P, Morris ER (2003) Cryogelation of xanthan. Food Hydrocolloids 17:495–501. doi:10.1016/S0268-005X(03)00019-5

    Article  CAS  Google Scholar 

  28. Luan T, Wu L, Zhang H, Wang Y (2012) A study on the nature of intermolecular links in the cryotropic weak gels of hyaluronan. Carbohydr Polym 87:2076–2085. doi:10.1016/j.carbpol.2011.10.029

    Article  CAS  Google Scholar 

  29. Velickova E, Winkelhausen E, Kuzmanova S, Cvetkovska M, Tsvetanov C (2009) Hydroxyethylcellulose cryogels used for entrapment of Saccharomyces cerevisiae cells. React Funct Polym 69:688–693. doi:10.1016/j.reactfunctpolym.2009.05.002

    Article  CAS  Google Scholar 

  30. Ozmen MM, Dinu MV, Dragan ES, Okay O (2007) Preparation of macroporous acrylamide-based hydrogels: cryogelation under isothermal conditions. J Macromol Sci Part A Pure Appl Chem 44:1195–1202. doi:10.1080/10601320701561148

    Article  CAS  Google Scholar 

  31. Abdurrahmanoglu S, Can V, Okay O (2009) Design of high-toughness polyacrylamide hydrogels by hydrophobic modification. Polymer 50:5449–5455. doi:10.1016/j.polymer.2009.09.042

    Article  CAS  Google Scholar 

  32. Baker BA, Murff RL, Milam VT (2010) Tailoring the mechanical properties of polyacrylamide-based hydrogels. Polymer 51:2207–2214. doi:10.1016/j.polymer.2010.02.022

    Article  CAS  Google Scholar 

  33. Burmistrova A, Richter M, Uzum C, Klitzing RV (2011) Effect of cross-linker density of P(NIPAM-co-AAc) microgels at solid surfaces on the swelling/shrinking behaviour and the Young’s modulus. Colloid Polym Sci 289:613–624. doi:10.1007/s00396-011-2383-2

    Article  CAS  Google Scholar 

  34. Zhang JT, Bhat R, Jandt KD (2009) Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater 5:488–497. doi:10.1016/j.actbio.2008.06.012

    Article  CAS  Google Scholar 

  35. Mandal BB, Kapoor S, Kundu SC (2009) Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels for controlled drug release. Biomaterials 30:2826–2836. doi:10.1016/j.biomaterials.2009.01.040

    Article  CAS  Google Scholar 

  36. Petrov P, Petrova E, Tsvetanov CB (2009) UV-assisted synthesis of super-macroporous polymer hydrogels. Polymer 50:1118–1123. doi:10.1016/j.polymer.2008.12.039

    Article  CAS  Google Scholar 

  37. Lynch I, Dawson KA (2003) Synthesis and characterization of an extremely versatile structural motif called the “Plum-Pudding” gel. J Phys Chem B 107:9629–9637. doi:10.1021/jp022008w

    Article  CAS  Google Scholar 

  38. Soddemann M, Richtering W (2004) Hydrogels filled with thermosensitive microgel particles. Progr Colloid Polym Sci 129:88–94. doi:10.1007/b100308

    CAS  Google Scholar 

  39. Meid J, Dierkes F, Cui J, Messing R, Crosby J, Schmidt A, Richtering W (2012) Mechanical properties of temperature sensitive microgel/polyacrylamide composite hydrogels from soft to hard fillers. Soft Matter 8:4254–4263. doi:10.1039/C2SM06868K

    Article  CAS  Google Scholar 

  40. Hild G (1998) Model networks based on ‘endlinking’ processes: synthesis, structure and properties. Prog Polym Sci 23:1019–1149. doi:10.1016/S0079-6700(97)00055-5

    Article  CAS  Google Scholar 

  41. Fernandez E, Daniel L, Lopez-Cabarcos E, Mijangos C (2005) Viscoelastic and swelling properties of glucose oxidase loaded polyacrylamide hydrogels and the evaluation of their properties as glucose sensors. Polymer 46:2211–2217. doi:10.1016/j.polymer.2004.12.039

    Article  CAS  Google Scholar 

  42. Maia J, Ferreira L, Carvalhoc R, Ramos MA, Gil MH (2005) Synthesis and characterization of new injectable and degradable dextran-based hydrogels. Polymer 46:9604–9614. doi:10.1016/j.polymer.2005.07.089

    Article  CAS  Google Scholar 

  43. Orakdogen N, Okay O (2006) Correlation between crosslinking efficiency and spatial inhomogeneity in poly(acrylamide) hydrogels. Polym Bull 57:631–641. doi:10.1007/s00289006-0624-1

    Article  CAS  Google Scholar 

  44. Budhavaram NK, Stauffer M, Barone JR (2011) Chemistry between crosslinks affects the properties of peptide hydrogels. Mat Sci Eng C 31:1042–1049. doi:10.1016/j.msec.2011.03.005

    Article  CAS  Google Scholar 

  45. Truong MY, Dutta NK, Choudhury NR, Kim M, Elvin CM, Nairn KM, Hill AJ (2011) The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels. Biomaterials 32:8462–8473. doi:10.1016/j.biomaterials.2011.07.064

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of this research by the European Social Fund—“Cristofor I. Simionescu” Postdoctoral Fellowship Programme (ID POSDRU/89/1.5/S/55216), Sectoral Operational Programme Human Resources Development 2007–2013 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ecaterina Stela Drăgan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1,875 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinu, M.V., Schwarz, S., Dinu, I.A. et al. Comparative rheological study of ionic semi-IPN composite hydrogels based on polyacrylamide and dextran sulphate and of polyacrylamide hydrogels. Colloid Polym Sci 290, 1647–1657 (2012). https://doi.org/10.1007/s00396-012-2699-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2699-6

Keywords

Navigation