Skip to main content
Log in

A Combined Experimental and Theoretical Investigation of Perylene Based Dyes as Sensitizer for Dye-Sensitized Solar Cell

  • PHYSICAL METHODS FOR INVESTIGATION OF CHEMICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Two perylene monoanhydride (PMA) based dyes (P1 and P2) were designed, synthesized and used as sensitizers for dye-sensitized solar cells (DSSCs) for the first time. The sensitizers were characterized well using 1H NMR, High Resolution Mass Spectrometry (HRMS) and FTIR techniques. The solvatochromic effect and the interaction of dye molecules with solvents were studied using absorption and emission spectra in different solvents. The highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) and absorption maxima (λmax) values calculated by density functional theory were consistent with the corresponding experimental values. The HOMO and LUMO levels of the sensitizers suppose the efficient and thermodynamically favorable electron injection and dye regeneration process of DSSCs. The higher binding ability of P1 with TiO2 in the ground state and excited state was demonstrated using absorption and emission spectra respectively. The fabricated DSSC using P1 showed higher power conversion efficiency of 0.22% than the DSSC fabricated using P2 of 0.19%. The higher efficiency of P1 was verified with the higher value of electron recombination (∆Grec) than that of P2. The energy level diagram and electron transfer process of DSSCs were also illustrated schematically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Grätzel, J. Photochem. Photobiol., A 164, 1 (2004).

    Article  Google Scholar 

  2. M. Grätzel, J. Photochem. Photobiol., C 4, 2 (2003).

  3. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Chem. Rev. 110, 11 (2010).

    Article  Google Scholar 

  4. L. M. Goncalves, V. de Zea Bermudez, H. A. Ribeiro, and A. M. Mendes, Energy Environ. Sci. 1, 6 (2008).

    Article  Google Scholar 

  5. O. I. Shevaleevskiy, A. B. Nikolskaia, M. F. Vildanova, S. S. Kozlov, O. V. Alexeeva, A. A. Vishnev, and L. L. Larina, Russ. J. Phys. Chem. B 12, 663 (2018).

    Article  CAS  Google Scholar 

  6. A. M. Khudhair, F. N. Ajeel, and M. H. Mohammed, Russ. J. Phys. Chem. B 12, 645 (2018).

    Article  CAS  Google Scholar 

  7. C. Kufazvinei, M. Ruether, J. Wang, and W. Blau, Org. Electron. 10, 4 (2009).

    Article  Google Scholar 

  8. S. Manoharan and S. Anandan, Dyes Pigm. 105, 0 (2014)

  9. A. Mishra, M. K. R. Fischer, and P. Bäuerle, Angew. Chem. Int. Ed. 48, 14 (2009).

    Article  Google Scholar 

  10. Z.-S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, and K. Hara, J. Phys. Chem. C 112, 43 (2008)

    Article  Google Scholar 

  11. P. Ganesan, A. Chandiran, P. Gao, R. Rajalingam, M. Grätzel, and M. K. Nazeeruddin, J. Phys. Chem. C 118, 30 (2014).

    Article  Google Scholar 

  12. C. Zafer, M. Kus, G. Turkmen, et al., Sol. Energy Mater. Sol. Cells 91, 5 (2007).

    Article  Google Scholar 

  13. Z. Zhao, W. Zhang, X. Lv, Y. Sun, F. Dong, and Y. Zhang, Environ. Sci.: Nano 3, 6 (2016).

    Google Scholar 

  14. C. Kantar, H. Akal, B. Kaya, F. Islamoğlu, M. Türk, and S. Şaşmaz, J. Organomet. Chem., 783, (2015).

  15. J. Otsuki, Y. Takaguchi, D. Takahashi, P. Kalimuthu, S. P. Singh, et al., Adv. Optoelectron. 2011, 860486 (2011)

    Article  Google Scholar 

  16. L. Han, J. He, J. g. Zhao, and S. Jiang, Res. Chem. Intermed. 43, 10 (2017).

    Article  Google Scholar 

  17. V. A. Kuzmin, V. A. Volnukhin, A. E. Egorov, O. N. Klimovich, A. A. Kostyukov, T. D. Nekipelova, E. N. Khodot, V. V. Shakhmatov, A. V. Shevelev, A. B. Shibaeva, and A. A. Shtil, Russ. J. Phys. Chem. B 13, 893 (2019).

    Article  CAS  Google Scholar 

  18. I. A. Nagovitsyn, G. K. Chudinova, A. I. Zubov, E. V. Zavedeev, Yu. M. Tairov, V. A. Moshnikov, I. E. Kononova, and V. V. Kurilkin, Russ. J. Phys. Chem. B 10, 657 (2016).

    Article  CAS  Google Scholar 

  19. H. M. Song, K. D. Seo, M. S. Kang, I. T. Choi, S. K. Kim, et al., J. Mater. Chem. 22, 9 (2012).

    Google Scholar 

  20. M. Liang and J. Chen, Chem. Soc. Rev. 42, 8 (2013).

    Article  Google Scholar 

  21. S. Ferrere and B. A. Gregg, New J. Chem. 26, 9 (2002).

    Article  Google Scholar 

  22. C. Li, Z. Liu, J. Schoneboom, F. Eickemeyer, N. G. Pschirer, et al., J. Mater. Chem. 19, 30 (2009).

    Google Scholar 

  23. J. Otsuki, Y. Takaguchi, D. Takahashi, P. Kalimuthu, S. P. Singh, et al., Adv. Optoelectron. 2011, 860486 (2011).

    Article  Google Scholar 

  24. A. Dubois, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, Appl. Opt. 35, 18 (1996)

    Google Scholar 

  25. I. A. Howard, M. Meister, B. Baumeier, H. Wonneberger, N. Pschirer, et al., Adv. Energy Mater. 4, 2 (2014).

    Google Scholar 

  26. J. A. Mikroyannidis, M. M. Stylianakis, P. Suresh, M. S. Roy, and G. D. Sharma, Energy Environ. Sci. 2, 12 (2009).

    Article  Google Scholar 

  27. K. Sharma, V. Sharma, and S. S. Sharma, Nanoscale Res. Lett. 13, 1 (2018).

    Article  Google Scholar 

  28. C. L. Mazzitelli, J. S. Brodbelt, J. T. Kern, M. Rodriguez, and S. M. Kerwin, J. Am. Soc. Mass Spectrom. 17, 4 (2006).

    Article  Google Scholar 

  29. L. Huang and S.-W. Tam-Chang, Chem. Commun. 47, 8 (2011).

    Google Scholar 

  30. S. Leroy-Lhez, L. Perrin, J. Baffreau, and P. Hudhomme, C. R. Chim. 9, 2 (2006).

    Article  Google Scholar 

  31. D. D. Günbaş, L. Zalewski, and A. M. Brouwer, Chem. Commun. 47, 17 (2011).

    Article  Google Scholar 

  32. Z. M. E. Fahim, S. M. Bouzzine, Y. Ait Aicha, M. Bouachrine, and M. Hamidi, Res. Chem. Intermed. 44, 3 (2018).

    Article  Google Scholar 

  33. A. V. Lobanov and M. Y. Melnikov, Russ. J. Phys. Chem. B 13, 565 (2019).

    Article  CAS  Google Scholar 

  34. K. Yun, S. Zhang, F. Yu, H. Ye, and J. Hua, J. Energy Chem. 27, 3 (2018).

    Article  Google Scholar 

  35. N. Nagarajan, G. Velmurugan, A. Prakash, N. Shakti, M. Katiyar, et al., Chem. - Asian J. 9, 1 (2014).

    Article  Google Scholar 

  36. J. L. Herek, T. Polívka, R. van Grondelle, and T. Pullerits, Chem. Phys. 357, 1 (2009). https://doi.org/10.1016/j.chemphys.2009.01.004

    Article  CAS  Google Scholar 

  37. S. Jagadeeswari, G. Paramaguru, and R. Renganathan, J. Photochem. Photobiol. A 276, 0 (2014).

  38. E. Kavery, N. Nagarajan, G. Paramaguru, and R. Renganathan, Spectrochim. Acta, A 146, 0 (2015).

  39. A. Irfan and A. Mahmood, J. Cluster Sci. 29, 2 (2018).

    Article  Google Scholar 

  40. L. Chen and W. Henrike, Adv. Mater. 24, 5 (2012).

    CAS  Google Scholar 

  41. Y. Zhan, J. Peng, K. Ye, P. Xue, and R. Lu, Org. Biomol. Chem. 11, 39 (2013).

    Article  Google Scholar 

  42. Z. J. Chermahini, A. N. Chermahini, H. A. Dabbagh, and A. Teimouri, J. Energy Chem. 24, 6 (2015).

    Article  Google Scholar 

  43. S. Muruganantham, N. Nagarajan, G. Velmurugan, A. Prakash, M. Katiyar, et al., Mater. Chem. Front. 1, 7 (2017).

    Article  Google Scholar 

  44. C. Klein, M. K. Nazeeruddin, P. Liska, D. di Censo, N. Hirata, et al., Inorg. Chem. 44, 2 (2005).

    Article  Google Scholar 

  45. J. A. Mikroyannidis, M. M. Stylianakis, M. S. Roy, P. Suresh, and G. D. Sharma, J. Power Sources 194, 2 (2009).

    Article  Google Scholar 

  46. J. Fortage, M. Séverac, C. Houarner-Rassin, Y. Pellegrin, E. Blart, and F. Odobel, J. Photochem. Photobiol. A 197, 2 (2008).

    Article  Google Scholar 

  47. A. Kathiravan, P. S. Kumar, R. Renganathan, and S. Anandan, Colloids Surf. A 333, 1 (2009).

    Article  Google Scholar 

  48. A. Kathiravan, M. Chandramohan, R. Renganathan, and S. Sekar, Spectrochim. Acta, A 72, 3 (2009).

    Article  Google Scholar 

  49. M. Asha Jhonsi, A. Kathiravan, and R. Renganathan, J. Mol. Struct. 921, 279 (2009).

    Article  CAS  Google Scholar 

  50. A. Kathiravan, M. Asha Jhonsi, and R. Renganathan, J. Lumin. 131, 9 (2011).

    Article  Google Scholar 

  51. E. Vaishnavi and R. Renganathan, Spectrochim. Acta A 115, 603 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank DST NM (Ref. no. SR/NM/NS-26/2013/19.02.2014), DST (Ref. no. SR/S1/PC-12/ 2011/20.09.2011) and UGC (Ref. no. MRP-MAJOR-CHEM-2013-35169 Dt: 1/7/2015) for the Projects and fellowship respectively. The authors also thank UGC for Emeritus fellowship (Ref no.UGC-EF-7855, 2016-2017). The authors also acknowledge UGC- FIST and DST for instrument facilities in our department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Renganathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavery, E., Vinodha, G., Prabhu, S. et al. A Combined Experimental and Theoretical Investigation of Perylene Based Dyes as Sensitizer for Dye-Sensitized Solar Cell. Russ. J. Phys. Chem. B 15 (Suppl 1), S92–S101 (2021). https://doi.org/10.1134/S1990793121090098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121090098

Keywords:

Navigation