Skip to main content
Log in

DFT Calculations and SEM–EDX Analysis of Copper(II)-Azide Complexes; [Cu(en)2(N3)2] and [Cu(Tmen)(N3)2]2 (Tmen = N,N,N',N'-Tetramethylethylenediamine)

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

DFT calculations were performed to predict the structures of two copper(II) azide complexes, [Cu(en)2(N3)2] (1) and [Cu(Tmen)(N3)2]2 (2), and to calculate their atomic charges and spin densities using natural bond orbital (NBO) analysis (where, en = 1,2-diaminoethane and Tmen = N,N,N',N'-tetramethylethylenediamine). A reliable assignment of the IR spectrum of complex 2 was made by DFT computations. The SEM–EDX measurements of the two complexes are also reported. The DFT optimization of 1 and 2 reveals that the theoretical models of water solvent are more effective in reproduction of the experimental structures. The results of SEM–EDX analysis described the surface morphologies and confirmed the elemental stoichiometry of the complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. B. Kharediya and S. Sunkari, Polyhedron 61, 80 (2013).

    Article  CAS  Google Scholar 

  2. I. Bkouche-Waksman, S. Sikorav and O. Kahn, J. Chem. Crystallogr. 13, 303 (1983).

    CAS  Google Scholar 

  3. S. Nawaz, M. Monim-ul-Mehboob, M. N. Tahir, et al., Z. Naturforsch. B 73, 259 (2018).

    Article  CAS  Google Scholar 

  4. C. Adhikary and S. Koner, Coord. Chem. Rev. 254, 2933 (2010).

    Article  CAS  Google Scholar 

  5. J. Ribas, A. Escuer, M. Monfort, et al., Coord. Chem. Rev. 193–195, 1027 (1999).

    Article  Google Scholar 

  6. S. Nawaz, A. Ghaffar, M. Monim-ul-Mehboob, et al., J. Inorg. Organomet. Polym. Mater. 27, 510 (2017).

    Article  CAS  Google Scholar 

  7. F. A. Mautner, M. Koikawa, M. Mikuriya, et al., Polyhedron 59, 17 (2013).

    Article  CAS  Google Scholar 

  8. S. Triki, C. J. Gomez-Garcia, E. Ruiz, and J. Sala-Pala, Inorg. Chem. 44, 5501 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. J. Luo, X.-G. Zhou, S. Gao, et al., Polyhedron 23, 1243 (2004).

    Article  CAS  Google Scholar 

  10. C. Adhikary, S. Banerjee, J. Chakraborty, and S. Ianelli, Polyhedron 65, 48 (2013).

    Article  CAS  Google Scholar 

  11. H.-T. Liu and J. Lu, Acta Crystallogr., C 70, 1083 (2014).

    Article  CAS  Google Scholar 

  12. F. R. Louka, S. S. Massoud, T. K. Haq, et al., Polyhedron 138, 177 (2017).

    Article  CAS  Google Scholar 

  13. Y.-H. Luo, Y.-H. Lu, and B.-W. Sun, Inorg. Chim. Acta 404, 188 (2013).

    Article  CAS  Google Scholar 

  14. S. Mistri, S. Garcia-Granda, E. Zangrando, and S. C. Manna, Polyhedron 50, 333 (2013).

    Article  CAS  Google Scholar 

  15. M. Liang, W. Z. Wang, Z.-O. Liu, et al., J. Coord. Chem. 56, 1473 (2003).

    Article  CAS  Google Scholar 

  16. W.-W. Sun, X.-B. Qian, C.-Y. Tian, and E.-Q. Gao, Inorg. Chim. Acta 362, 2744 (2009).

    Article  CAS  Google Scholar 

  17. M. Zbiri, S. Saha, C. Adhikary, S. Chaudhuri, et al., Inorg. Chim. Acta 359, 1193 (2006).

    Article  CAS  Google Scholar 

  18. H.-R. Wen, J.-L. Zuo, W. Liu, et al., Inorg. Chim. Acta 358, 2565 (2005).

    Article  CAS  Google Scholar 

  19. C. Adhikary, D. Mal, R. Sen, et al., Polyhedron 26, 1658 (2007).

    Article  CAS  Google Scholar 

  20. Y. N. Zhuravlev and V. M. Lisitsyn, Russ. J. Phys. Chem. B 8, 117 (2014).

    Article  CAS  Google Scholar 

  21. S. Nawaz, W. Zierkiewicz, M. Michalczyk, et al., J. Struct. Chem. 60, 556 (2019).

    Article  CAS  Google Scholar 

  22. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  23. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  24. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  26. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).

    Article  CAS  Google Scholar 

  28. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).

    Article  CAS  Google Scholar 

  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian (Gaussian, Inc., Wallingford CT, 2016).

    Google Scholar 

  30. F. Neese, WIREs: Comput. Mol. Sci. 2, 73 (2012).

    Article  CAS  Google Scholar 

  31. L. Noodleman and J. G. Norman, Jr., J. Chem. Phys. 70, 4903 (1979).

    Article  CAS  Google Scholar 

  32. L. Noodleman, J. Chem. Phys. 74, 5737 (1981).

    Article  CAS  Google Scholar 

  33. L. Noodleman and E. R. Davidson, Chem. Phys. 109, 131 (1986).

    Article  Google Scholar 

  34. I. Agrell, Acta Chem. Scand. 25, 2965 (1971).

    Article  CAS  Google Scholar 

  35. O. L. Casagrande, Jr., S. I. Klein, A. E. Mauro, and K. Tomita, Trans. Met. Chem 14, 45 (1989).

    Article  CAS  Google Scholar 

  36. G. de Munno, M. G. Lombardi, P. Paoli, et al., Inorg. Chim. Acta 282, 252 (1998).

    Article  CAS  Google Scholar 

  37. Z. Mardani, K. Moeini, M. Darroudi, et al., J. Coord. Chem. 72, 3030 (2019).

    Article  CAS  Google Scholar 

  38. L. Li, Z. Jiang, D. Liao, et al., Trans. Met. Chem. 25, 630 (2000).

    Article  CAS  Google Scholar 

  39. A. Ray, S. Banerjee, R. J. Butcher, et al., Polyhedron 27, 2409 (2008).

    Article  CAS  Google Scholar 

  40. N. V. Chukanov, T. S. Larikova, N. N. Dremova, V. V. Zakharov, I. N. Trun’kin, A. S. Burlov, V. G. Vlasenko, and G. I. Djardimalieva, Russ. J. Phys. Chem. B 14, 323 (2020).

    Article  CAS  Google Scholar 

  41. A. Datta, K. Dasb, W.-Y. Huanga, et al., J. Chem. Res. 3, 140 (2011).

    Article  Google Scholar 

  42. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A: Theory and Applications in Inorganic Chemistry, 6th ed. (Wiley, Hoboken, NJ, 2009).

    Google Scholar 

  43. J. Comarmond, P. Plumere, J. M. Lehn, et al., J. Am. Chem. Soc. 104, 6330 (1982).

    Article  CAS  Google Scholar 

  44. S. Sikorav, I. Bkouche-Waksman, and O. Kahn, Inorg. Chem. 23, 490 (1984).

    Article  CAS  Google Scholar 

  45. A. Espinosa, M. Sohail, M. Habib, et al., Polyhedron 90, 252 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul Ghaffar, Nawaz, S., Munawar, A. et al. DFT Calculations and SEM–EDX Analysis of Copper(II)-Azide Complexes; [Cu(en)2(N3)2] and [Cu(Tmen)(N3)2]2 (Tmen = N,N,N',N'-Tetramethylethylenediamine). Russ. J. Phys. Chem. B 15 (Suppl 1), S42–S51 (2021). https://doi.org/10.1134/S1990793121090074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121090074

Keywords:

Navigation