Skip to main content
Log in

The CHSH Bell Inequality: A Critical Look at Its Mathematics and Some Consequences for Physical Chemistry

  • PHYSICAL METHODS FOR INVESTIGATION OF CHEMICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In the paper it is demonstrated that Bell’s theorem is an unprovable theorem. The unprovable characteristic has, on the chemical side, repercussions for e.g. spin chemistry and the related magneto-reception studies. We claim that the unprovability of this basic mathematics cannot be ignored by the physics and chemical research community. The demonstrated mathematical multivaluedness could be an overlooked aspect of nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. H. Friedman, Lecture at the Andrzej Mostowski Centenary, Poland, Warsaw, 2013.

    Google Scholar 

  2. H. Geurdes, Axiomathes (2020). https://doi.org/10.1007/s10516-020-09479-7

  3. D. Howard, Stud. Hist. Phil. Sci. 16, 171 (1985).

    Article  Google Scholar 

  4. Y. Tanimoto and Y. Fujiwara, in Handbook of Photochemistry and Photobiology, Ed. by H. S. Nalwa (Am. Sci. Publ., 2003), Vol. 1, Chap. 10.

    Google Scholar 

  5. C. T. Rodgers and P. J. Hore, Proc. Natl. Acad. Sci. U. S. A. 106, 353 (2009).

    Article  CAS  Google Scholar 

  6. R. Wiltschko and W. Wiltschko, J. R. Soc. Interface 16, 20190295 (2019). https://doi.org/10.1098/rsif.2019.0295

  7. H. Wennesröm and P. O. Westlund, Entropy 19, 186 (2017). https://doi.org/10.3390/e119050186m

    Article  Google Scholar 

  8. H. Geurdes, Substantia 3 (2), 27 (2019). https://doi.org/10.13128/Substantia-633

    Article  Google Scholar 

  9. A. I. Kokorin, O. I. Gromov, T. Kalai, K. Hideg, and A. E. Putnikov, Russ. J. Phys. Chem. B 13, 739 (2019).

    Article  CAS  Google Scholar 

  10. N. M Kuznetsov and S. N. Kozlov, Russ. J. Phys. Chem. Phys. B 13, 464 (2019).

    Article  CAS  Google Scholar 

  11. V. Ya. Krivnov, D. V. Dmitriev, and N. S. Erikhman, Russ. J. Phys. Chem. B 13, 923 (2019).

    Article  CAS  Google Scholar 

  12. O. Kahn, Molecular Magnetism (VCH, France, Orsay, 1993).

    Google Scholar 

  13. M. M. Avilova and V. V. Petrov, Russ. J. Phys. Chem. B 11, 618 (2017).

    Article  CAS  Google Scholar 

  14. H. Geurdes, Fresnell Integration and Diffraction Amplitude (2020). https://www.essoar.org/pdfjs/10.1002/essoar.10502544.1

  15. A. L. Kovarskii, V. V. Kasparov, A. V. Krivandin, O. V. Shatalova, R. A. Kokorin, and A. M. Kuperman, Russ. J. Phys. Chem. B 11, 233 (2017).

    Article  CAS  Google Scholar 

  16. B. Norden, Quart. Rev. Biophys. 49, 1 (2016). https://doi.org/10.1017/S0033583516000111

    Article  Google Scholar 

  17. B. Norden, Chem. Phys. 507, 28 (2015).

    Article  Google Scholar 

  18. A. S. Yessenin-Volpin and C. Hennix, arXiv: 0110094v22 (2001).

  19. B. Meltzer and R. B. Braithwaite, Kurt Gödel on Formally Undecidable Propositions of Principia Mathematica and Related Systems (Dover, New York, 1962).

    Google Scholar 

  20. J. F. Clauser, M. A. Holt, A. Shimony and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).

    Article  Google Scholar 

  21. H. Friedman, Boolean Relation Theory and Incompleteness (Ohio State Univ., OH, 2011).

    Google Scholar 

  22. J. S. Bell, Physics 1, 195 (1964).

    Article  Google Scholar 

  23. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

    Article  CAS  Google Scholar 

  24. D. Bohm, Quantum Theory (Prentice-Hall, Englewood Cliffs, 1951), p. 611.

    Google Scholar 

  25. A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht, 2002).

    Book  Google Scholar 

  26. R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics, 3rd ed. (Prentice-Hall, Englewood Cliffs, 1995).

    Google Scholar 

  27. E. Bishop, Foundations of Constructive Analysis (McGraw-Hill, New York, 1967).

    Google Scholar 

  28. M. Hendtlass, Ann. Pure Appl. Logic 163, 1050 (2012).

    Article  Google Scholar 

  29. K. S. Pedersen, J. Bendix, and R. Clérac, Chem. Commun. 50, 4396 (2014).

    Article  CAS  Google Scholar 

  30. H. Geurdes, in Quantum Foundations, Probability and Information, Ed. by A. Khrennikov and B. Toni, STEAM-H (Springer, 2018); arXiv: 1806.07230. https://doi.org/10.1007/978-3-319-74971-6

  31. H. Friedman, uploaded U Gent (2013). https://m.youtube.com/watch?v=CygnQSFCA80.

  32. A. McKenzie, Axiomathes (2019). https://doi.org/10.1007/s10516-019-09466-7

  33. H. Geurdes, viXra: 1910.0423 (2019).

  34. H. Geurdes, K. Nagata and T. Nakamura, arXiv: 1704.00005.

Download references

ACKNOWLEDGMENTS

The authors wish to thank I. Koutsaroff, Technical Advisor Wisol Japan KK in Osaka Japan, for his support and I.N. Mikhailova for editorial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Geurdes or Koji Nagata.

Ethics declarations

The author declares on behave of the others that there is no conflict of interest.

The corresponding author was not funded for this research.

The corresponding author trusts that the reviewers also do not have a conflict of interest.

Appendices

APPENDIX A

The claim that Kn goes to zero for large n was presented to the authors in a previous review process. The claim of the unknown referee was that the integral Kn had a closed form solution, as presented below. The reader can in this appendix verify the ”CHSH is true ”side of the claim. In the main text we have demonstrated Kn ≈ 1. Here it is rejected. We start again with

$$\begin{gathered} \hfill {{K}_{n}} = \frac{4}{{\pi {{n}^{2}}}}\int\limits_{x = 1/n}^{x = 1/4} {\frac{{dx}}{{{{x}^{4}} - 2\frac{{{{x}^{2}}}}{{{{n}^{2}}}} + \frac{{{{n}^{2}} + 1}}{{{{n}^{4}}}}}}} \\ \hfill = \frac{4}{\pi }\int\limits_{x = 1/n}^{x = 1/4} {\frac{{dx}}{{{{n}^{2}}{{x}^{4}} - 2{{x}^{2}} + 1 + \frac{1}{{{{n}^{2}}}}}}.} \\ \end{gathered} $$
(A.57)

The closed form is based on the subsequent function Fn

$${{F}_{n}}(x) = 2\frac{{n\sqrt 2 }}{{\pi \left( {{{n}^{2}} + \sqrt {1 + {{n}^{2}}} + 1} \right)}}\left( {{{G}_{n}}(x) + {{H}_{n}}(x)} \right),$$
(A.58)

with

$${{G}_{n}}(x) = n{\kern 1pt} \log \left( {\frac{{{{U}_{{n, + }}}(x) + \sqrt {1 + {{n}^{2}}} + 1}}{{{{U}_{{n, - }}}(x) + \sqrt {1 + {{n}^{2}}} + 1}}} \right),$$
(A.59)

with

$$\begin{gathered} {{U}_{{n, + }}}(x) = {{n}^{2}}\left( {{{x}^{2}}\left( {\sqrt {1 + {{n}^{2}}} + 1} \right) + 1} \right) \\ \pm \,\,n\sqrt 2 x{{\left( {\sqrt {1 + {{n}^{2}}} + 1} \right)}^{{(3/2)}}}, \\ \end{gathered} $$

together with

$$\begin{gathered} {{H}_{n}}(x) = 2\left( {\sqrt {1 + {{n}^{2}}} + 1} \right) \\ \times \,\,\left( {\arctan \left( {{{I}_{n}}(x)} \right) - \arctan \left( {{{J}_{n}}(x)} \right)} \right). \\ \end{gathered} $$
(A.60)

The In(x) and Jn(x) are defined by

$$\begin{gathered} {{I}_{n}}(x) = \frac{{\sqrt {\sqrt {1 + {{n}^{2}}} + 1} + nx\sqrt 2 }}{{\sqrt {\sqrt {1 + {{n}^{2}}} - 1} }}, \hfill \\ {{J}_{n}}(x) = \frac{{\sqrt {\sqrt {1 + {{n}^{2}}} + 1} - nx\sqrt 2 }}{{\sqrt {\sqrt {1 + {{n}^{2}}} - 1} }}. \hfill \\ \end{gathered} $$
(A.61)

This set of definitions (A.58)–(A.61) define the Fn(x) and we have

$${{K}_{n}} = {{F}_{n}}(1{\text{/}}4) - {{F}_{n}}(1{\text{/}}n).$$
(A.62)

The reader can check that indeed the Kn expressed in (A.62) approaches zero for increasing n. However, how to explain the contrast with Kn ≈ 1 such as given in the main text. We believe that this is the ultimate example of Gödel negation incompleteness in concrete mathematics. It is noted that the aforementioned reviewer presented the expression without the explicit proof that his is a single unique solution.

APPENDIX B

This result can be found in Fig. 1 above With the particular parameters in the code we get 1 ≥ Kn ≈ 0.9671.

program testAtAr

integer nmax, n, m,j,k

real*8 h,xx,funfArr,nlim,f2,ffHelp

real*8 pw

real*8 eps,beta,fact,y0,ystart,yfin

real*8 g1,g2,f,f0,resl, integral

parameter(nlim = 3.5e17)

parameter(nmax = 50)

parameter (m = 100)

parameter (h = 5.3e-6)

real*8 ffArray(m),xxVar(m)

c output for plot

open(1,

+file = 'res.txt'

+,status = 'unknown')

open(2,

+file = 'xres.txt'

+,status = 'unknown')

open(3,

+file = 'yres.txt'

+,status = 'unknown')

write(1,*)0.0

write(2,*)0.0

eps = 1/nlim

f0 = (nlim*nlim)*dsqrt(1.0+(eps*eps))

c determine the proper starting point given the integration

c interval h to 'catch' the singularity at a given n

beta = –(2.6)/(3.0)

y0 = 1.0/dsqrt(1.0+(eps*eps))

pw = –(2.0)/(3.0)

f2 = (2.0)**pw

y0 = y0*(f2*(nlim**beta)–(1/(nlim*nlim)))

ystart = y0–(9.0*h)

yfin = y0+(20.0*h)

c the yfin is there to not waste too much iterations

xx = ystart

j = 0

10 continue

if(xx.gt.0) then

j = j+1

xxVar(j) = xx

ffHelp = funfArr(xx,nlim)

g1 = ffHelp/dsqrt(1.0+(eps*eps))

f = f0*xx

g2 = f0/((f+1.0)**(1.5))

ffArray(j) = (g1*g2)/2.0

write(1,*)ffArray(j)

write(2,*)xxVar(j)

endif

xx = xx+h

if (xx.lt.yfin) go to 10

write(*,*) 'number of iterations = ',j

c integration

resl = integral(ffArray,h,j)

write(*,*)'integral = ',resl

write(3,*) resl

close(unit = 3)

close(unit = 2)

close(unit = 1)

stop

end

real*8 function integral(ffArray,h,n)

integer i,j,k,n,m

parameter (m = 100)

real*8 sum,h,ffArray(m)

sum = 0

do 10 j = 1,n

10 sum = sum+(ffArray(j)*h)

integral = sum

return

end

real*8 function funfArr(xx,nlim)

real*8 xx,nlim

real*8 pi,y,z

z = nlim*xx

pi = 4*atan(1.0)

y = (2/pi)*atan(z)

funfArr = y

return

end

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geurdes, H., Nagata, K. & Nakamura, T. The CHSH Bell Inequality: A Critical Look at Its Mathematics and Some Consequences for Physical Chemistry. Russ. J. Phys. Chem. B 15 (Suppl 1), S68–S80 (2021). https://doi.org/10.1134/S1990793121090050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121090050

Keywords:

Navigation