Skip to main content
Log in

Increasing the Performance of Cathode Material in Alkaline (Li, Na and K) Ion Battersis: Synthesis and Characterization

  • CHEMICAL PHYSICS OF NANO-MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The purpose of this study is to find a ternary solid solution of nickel, magnesium, manganese in the alkaline-based cathode material (Na, Li) replacement with LiCoO2 that is too much expensive and toxic. Samples from the proposed {[(1–xy) LiNi0.7Co0.3 (Al and Mg doped)] O2} system were synthesized using the sol-gel method. Stoichiometric weights of the LiNO3, Mg (NO3)2⋅6H2O, Mn (Ac)2⋅4H2O, Co(Ac)2⋅4H2O, Ni(NO3)2⋅6H2O as starting materials of lithium, magnesium, manganese , cobalt and nickel, in 28 samples of {[(1–xy) LiNi0.7Co0.3 (Al and Mg doped)] O2}, respectively. We exhibited “Li1.167Ni0.117Co0.699Al0.017Mn0.167O2” is the best composition for cathode material. Obviously, the used weight of cobalt in these samples is lower compared with LiCoO2 that is an advantage in view point of cost in this study. With the same method we used (1–xy) LiNi0.7 Co0.2Mg0.1, xLi2MnO3, yLiCoO2 composites and five samples have been found with the best conditions in viewpoints of capacity and cyclability. Among these samples with Li1.333Ni0.1Mg0.017Co0.551Mn0.333O2 structure is the best sample of those 28 compositions including Mg doped position. Charge-discharge characteristics of the mentioned cathode materials were investigated by performing cycle tests in the range of 2.4–4.6 V. Our results confirmed, although these kind systems can help for removing the disadvantage of cobalt which mainly is its cost and toxic, the performance of these kind systems are similar to LiCoO2 or NaCoO2 cathode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Lithium Ion Batteries Outlook and Alternative Energy Vehicle (HEVs, PHEVs) Technologies, Markets, Competitors and Opportunities: 2010–2012 Analysis and Forecasts Market Research (Rockville, MD, 2010).

  2. M. Yoshio, R. J. Brodd, and A. Kozawa, Lithium-Ion Batteries, Science and Technologies (Springer, New York, 2009).

    Book  Google Scholar 

  3. B. Scrosati and J. Garche, J. Power Sources 195, 2419 (2010).

    Article  CAS  Google Scholar 

  4. C. Daniel and J. O. Besenhard, Handbook of Battery Materials, 2nd ed. (Wiley-VCH, Weinheim, 2011).

    Book  Google Scholar 

  5. R. A. Meyers, Encyclopedia of Sustainability Science and Technology (Springer, New York, 2012)

    Book  Google Scholar 

  6. E. Rossen, C. D. W. Jones, and J. R. Dahn, Solid State Ionics 57, 311 (1992).

    Article  CAS  Google Scholar 

  7. M. E. Spahr, P. Novák, B. Schnyder, et al., J. Electrochem. Soc. 145, 1113 (1998).

    Article  CAS  Google Scholar 

  8. T. Ohzuku and Y. Makimura, Chem. Lett. 30, 744 (2001).

    Article  Google Scholar 

  9. Y. Makimura and T. Ohzuku, J. Power Sources 119–121, 156 (2003).

    Article  Google Scholar 

  10. Z. Liu, A. Yu, and J. Y. Lee, J. Power Sources, 81–82, 416 (1999).

    Article  Google Scholar 

  11. M. Yoshio, H. Noguchi, J.-I. Itoh, et al., J. Power Sources 90, 176 (2000).

    Article  CAS  Google Scholar 

  12. T. Ohzuku and Y. Makimura, Chem. Lett. 30, 642 (2001).

    Article  Google Scholar 

  13. I. Belharouak, Y.-K. Sun, J. Liu, and K. Amine, J. Power Sources 123, 247 (2003).

    Article  CAS  Google Scholar 

  14. J. K. Ngala, N. A. Chernova, M. Ma, et al., J. Mater. Chem. 14, 214 (2004).

    Article  CAS  Google Scholar 

  15. W.-S. Yoon, K. Y. Chung, J. McBreen, and X.-Q. Yang, Electrochem. Commun. 8, 1257 (2006).

    Article  CAS  Google Scholar 

  16. B. Ammundsen, J. Paulsen, I. Davidson, and R.-S. Liu, Electrochem. Soc. 149, A431 (2002).

    Article  CAS  Google Scholar 

  17. M. M.Thackeray, C. S. Johnson, J. T. Vaughey, N. Li†, and S. A. Hackney, J. Mater. Chem. 15, 2257 (2005).

    Article  CAS  Google Scholar 

  18. L. Zhang, H. Noguchi, and M. Yoshio, J. Power Sources 110, 57 (2002).

    Article  CAS  Google Scholar 

  19. S. S. Shin, Y. K. Sun, and K. Amine, J. Power Sources 112, 634 (2002).

    Article  CAS  Google Scholar 

  20. Hailang Zhang, Adv. Mater. Sci. Eng. 746341, 7 (2014).

    Google Scholar 

  21. G. M. Ehrlich and D. Linden, Handbook of Lithium-Ion Batteries (McGraw-Hill, New York, 2002).

    Google Scholar 

  22. Z.-G. Yang, J.-L. Zhang, M. C. W. Kintner-Meyer, et al., Chem. Rev. 111, 3577 (2011).

    Article  CAS  Google Scholar 

  23. A. E. Galashev, O. R. Rakhmanova, K. P. Katin, M. M. Maslov, and Yu. P. Zaikov, Russ. J. Phys. Chem. B 14, 1055 (2020).

    Article  CAS  Google Scholar 

  24. A. A. Kashmeri, F. Nawaz, M. Yousaf, A. Shameem, M. Shabir Mahr, J. Iqbal, M. Shafique and M. A. Javed, Russ. J. Phys. Chem. B 14, 552 (2020).

    Article  Google Scholar 

  25. F. K. Fotooh and M. Atashparvar, Russ. J. Phys. Chem. B 13, 1 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Monajjemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samira Bagheri, Monajjemi, M., Ziglari, A. et al. Increasing the Performance of Cathode Material in Alkaline (Li, Na and K) Ion Battersis: Synthesis and Characterization. Russ. J. Phys. Chem. B 15 (Suppl 1), S140–S148 (2021). https://doi.org/10.1134/S1990793121090049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121090049

Keywords:

Navigation