Skip to main content
Log in

Electrochemical properties and kinetics of Li–Cu co-doping LiMn2O4 cathode materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Li1.05Cu0.05Mn1.90O4 cathode materials were synthesized by liquid phase combustion method at different temperatures from 400 to 700 °C. All samples show good crystallinity and conform to the Fd3m space group of spinel LiMn2O4. The Li1.05Cu0.05Mn1.90O4 sample prepared at 600 °C has a sharp diffraction peak compared to the pristine LiMn2O4, while no impurities are detected. Both the Li–Cu co-doping and calcination temperature have effects on the morphology and particle size distribution. The electrochemical properties reveal that initial discharge capacity of the Li1.05Cu0.05Mn1.90O4 is 102.4 mAh g−1 and pristine LiMn2O4 electrode is 105.3 mAh g−1. After 1000 cycles, the capacity retention rate of the pristine LiMn2O4 (63.0%) has less than 74.3% of the Li1.05Cu0.05Mn1.90O4 sample. The lithium-ion diffusion coefficient indicates that the as-prepared Li1.05Cu0.05Mn1.90O4 electrode (1.58 × 10−10 cm2 s−1) at 600 °C displays better Li+ diffusion ability when compared with the pristine LiMn2O4 (8.06 × 10−11 cm2 s−1). Simultaneously, the apparent activation energy further demonstrates that the Li1.05Cu0.05Mn1.90O4 (22.84 kJ/mol) electrode has lower polarization when compared with the LiMn2O4 (34.95 kJ/mol) electrode. These results show that synergistic effect of the Li+ and Cu2+ enhances the cycle reversibility and kinetics properties in cycle of the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Li, D. Li, D. Song, X. Shi, X. Tang, H. Zhang, L. Zhang, Unravelling the structure and electrochemical performance of Li–Cr–Mn-O cathodes: from spinel to layered. ACS Appl. Mater. Interfaces 10, 8827–8835 (2018)

    Article  CAS  Google Scholar 

  2. S.T. Myung, K. Amine, Y.K. Sun, Nanostructured cathode materials for rechargeable lithium batteries. J. Power Sources 283, 219–236 (2015)

    Article  CAS  Google Scholar 

  3. B. Chen, L. Ben, H. Yu, Y. Chen, X. Huang, Understanding surface structural stabilization of the high-temperature and high-voltage cycling performance of Al3+ modified LiMn2O4 cathode material. ACS Appl. Mater. Interfaces 10, 550–559 (2018)

    Article  CAS  Google Scholar 

  4. C.G. Han, C. Zhu, G. Saito, T. Akiyama, Improved electrochemical performance of LiMn2O4 surface-modified by a Mn4+ rich phase for rechargeable lithium-ion batteries. Electrochim. Acta 209, 225–234 (2016)

    Article  CAS  Google Scholar 

  5. Y. Ito, Y. Idemoto, Y. Tsunoda, N. Koura, Relation between crystal structures, electronic structures, and electrode performances of LiMn2−xMxO4 (M = Ni, Zn) as a cathode active material for 4 V secondary Li batteries. J. Power Sources 119–121, 733–737 (2003)

    Article  Google Scholar 

  6. K. Suzuki, Y. Oumi, S. Takami, M. Kubo, A. Miyamoto, M. Kikuchi, Structural properties of LixMn2O4 as investigated by molecular dynamics and density functional theory. J. Appl. Phys. 39, 4318 (2000)

    Article  CAS  Google Scholar 

  7. J. Mao, K. Dai, M. Xuan, G. Shao, R. Qiao, W. Yang, V.S. Battaglia, G. Liu, Effect of chromium and niobium doping on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material. ACS Appl. Mater. Interfaces 8, 9116–9124 (2016)

    Article  CAS  Google Scholar 

  8. R. Thirunakaran, T. Kim, W.S. Yoon, Zinc and aluminium: glutamic acid assisted dual-doped LiMn2O4 spinels via sol–gel method as cathode material for use in lithium rechargeable batteries. J. Sol-Gel Sci. Technology 73, 62–71 (2014)

    Article  Google Scholar 

  9. D.L. Fang, J.C. Li, X. Liu, P.F. Huang, T.R. Xu, M.C. Qian, C.H. Zheng, Synthesis of a Co–Ni doped LiMn2O4 spinel cathode material for high-power Li-ion batteries by a sol–gel mediated solid-state route. J. Alloys Compd. 640, 82–89 (2015)

    Article  CAS  Google Scholar 

  10. M. Reynaud, P. Barpanda, G. Rousse, J.N. Chotard, B.C. Melot, N. Recham, J.M. Tarascon, Synthesis and crystal chemistry of the NaMSO4F family (M=Mg, Fe Co, Cu, Zn). Solid State Sci. 14, 15–20 (2012)

    Article  CAS  Google Scholar 

  11. J. Liu, G. Li, Y. Yu, H. Bai, M. Shao, J. Guo, C. Su, X. Liu, W. Bai, Synthesis and electrochemical performance evaluations of polyhedra spinel LiAlxMn2-xO4 (x≦0.20) cathode materials prepared by a solution combustion technique. J. Alloys Compd. 728, 1315–1328 (2017)

    Article  CAS  Google Scholar 

  12. H. Zhao, F. Li, X. Bai, T. Wu, Z. Wang, Y. Li, J. Su, Enhanced cycling stability of LiCuxMn1.95-xSi0.05O4 cathode material obtained by solid-state method. Materials 11, 1302 (2018)

    Article  Google Scholar 

  13. K.R. Murali, T. Saravanan, M. Jayachandran, Synthesis and characterization of copper substituted lithium manganate spinels. J. Mater. Sci. Mater. Electron. 19, 533–537 (2007)

    Article  Google Scholar 

  14. B. Ebin, S. Gürmen, G. Lindbergh, Electrochemical properties of nanocrystalline LiCuxMn2−xO4 (x=0.2–0.6) particles prepared by ultrasonic spray pyrolysis method. Mater. Chem. Phys. 136, 424–430 (2012)

    Article  CAS  Google Scholar 

  15. P. Angelopoulou, F. Paloukis, G. Słowik, G. Wójcik, G. Avgouropoulos, Combustion-synthesized LixMn2O4 based spinel nanorods as cathode materials for lithium-ion batteries. J. Chem. Eng. 311, 191–202 (2017)

    Article  CAS  Google Scholar 

  16. J. Hao, H. Bai, J. Liu, F. Yang, Q. Li, C. Su, J. Guo, Synthesis and electrochemical properties of spinel Li(Li0.05Cu0.05Mn1.90)O4 by a flameless combustion method. J Alloys Compd. 668, 200–205 (2016)

    Article  CAS  Google Scholar 

  17. N.V. Kosova, E.T. Devyatkina, Synthesis of nanosized materials for lithium-ion batteries by mechanical activation: studies of their structure and properties. Russ. J. Electrochem. 48, 320–329 (2012)

    Article  CAS  Google Scholar 

  18. H. Gu, G. Wang, C. Zhu, Y. Hu, X. Zhang, W. Wen, X. Yang, B. Wang, X. Gao, X. Zhan, J. Li, Z.F. Ma, Q. He, Correlating cycle performance improvement and structural alleviation in LiMn2-xMxO4 spinel cathode materials: a systematic study on the effects of metal-ion doping. Electrochim. Acta 298, 806–817 (2019)

    Article  CAS  Google Scholar 

  19. H. Zhao, F. Li, X. Liu, C. Cheng, Z. Zhang, Y. Wu, W. Xiong, B. Chen, Effects of equimolar Mg (II) and Si (IV) co-doping on the electrochemical properties of spinel LiMn2−2xMgxSixO4 prepared by citric acid assisted sol–gel method. Electrochim. Acta 151, 263–269 (2015)

    Article  CAS  Google Scholar 

  20. X. Ding, H. Zhou, G. Liu, Z. Yin, Y. Jiang, X. Wang, Electrochemical evaluation of LiAl0.05Ni0.05Mn1.9O4 cathode material synthesized via electrospinning method. J. Alloys Compd. 632, 147–151 (2015)

    Article  CAS  Google Scholar 

  21. T.F. Yi, Y. Xie, Y.R. Zhu, R.S. Zhu, M.F. Ye, High rate micron-sized niobium-doped LiMn1.5Ni0.5O4 as ultra high power positive-electrode material for lithium-ion batteries. J. Power Sources 211, 59–65 (2012)

    Article  CAS  Google Scholar 

  22. R.H. Zeng, W.S. Li, L.D. Sheng, Q.M. Huang, L.Z. Zhao, Insertion/removal kinetics of lithium ion in spinel LiCuxMn2-xO4. Trans. Nonferrous Met. Soc. China 17, 1312–1318 (2007)

    Article  CAS  Google Scholar 

  23. X.Y. Feng, C. Shen, H.F. Xiang, H.K. Liu, Y.C. Wu, C.H. Chen, High rate capability of 5 V LiNi0.5Mn1.5O4 cathode material synthesized via a microwave assist method. J. Alloys Compd. 695, 227–232 (2017)

    Article  CAS  Google Scholar 

  24. X.T. Yin, W.D. Zhou, J. Li, P. Lv, Q. Wang, D. Wang, F.Y. Wu, D. Dastan, H. Garmestani, Z. Shi, Ş. Ţălu, Tin dioxide nanoparticles with high sensitivity and selectivity for gas sensors at sub-ppm level of hydrogen gas detection. J. Mater. Sci. Mater. Electron. 30, 14687–14694 (2019)

    Article  CAS  Google Scholar 

  25. A.V. Potapenko, S.A. Kirillov, Enhancing high-rate electrochemical properties of LiMn2O4 in a LiMn2O4/LiNi0.5Mn1.5O4 core/shell composite. Electrochim. Acta 258, 9–16 (2017)

    Article  CAS  Google Scholar 

  26. D. Dastan, Nanostructured anatase titania thin films prepared by sol-gel dip coating technique. J. At. Mol. Condens. Nano Phys. 2, 109–114 (2015)

    Google Scholar 

  27. D. Dastan, Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel. Appl. Phys. A 123(11), 699 (2017)

    Article  Google Scholar 

  28. J. Liu, G. Li, H. Bai, M. Shao, C. Su, J. Guo, X. Liu, W. Bai, Enhanced cycle and rate performances of Li(Li0.05Al0.05Mn1.90)O4 cathode material prepared via a solution combustion method for lithium-ion batteries. Solid State Ionics 307, 79–89 (2017)

    Article  CAS  Google Scholar 

  29. L. Chen, W. Zhai, L. Chen, D. Li, X. Ma, Q. Ai, X. Xu, G. Hou, L. Zhang, J. Feng, P. Si, L. Ci, Nanostructured LiMn2O4 composite as high-rate cathode for high performance aqueous Li-ion hybrid supercapacitors. J. Power Sources 392, 116–122 (2018)

    Article  CAS  Google Scholar 

  30. D. Capsoni, M. Bini, G. Chiodelli, V. Massarotti, C.B. Azzoni, M. Cristina Mozzati, A. Comin, Inhibition of Jahn-Teller cooperative distortion in LiMn2O4 spinel by transition metal ion doping. Phys. Chem. Chem. Phys. 3, 2162–2166 (2001)

    Article  CAS  Google Scholar 

  31. S. Chen, Z. Chen, C. Cao, Mesoporous spinel LiMn2O4 cathode material by a soft-templating route. Electrochim. Acta 199, 51–58 (2016)

    Article  CAS  Google Scholar 

  32. X. Li, Z. Shao, K. Liu, G. Liu, B. Xu, Synthesis and electrochemical characterizations of LiMn2O4 prepared by high temperature ball milling combustion method with citric acid as fuel. J. Electroanalyt. Chem. 818, 204–209 (2018)

    Article  CAS  Google Scholar 

  33. Q. Zhu, S. Zheng, X. Lu, Y. Wan, Q. Chen, J. Yang, L.Z. Zhang, Z. Lu, Improved cycle performance of LiMn2O4 cathode material for aqueous rechargeable lithium battery by LaF3 coating. J. Alloys Compd. 654, 384–391 (2016)

    Article  CAS  Google Scholar 

  34. J.L. Wang, Z.H. Li, J. Yang, J.J. Tang, J.J. Yu, W.B. Nie, G.T. Lei, Q.Z. Xiao, Effect of Al-doping on the electrochemical properties of a three-dimensionally porous lithium manganese oxide for lithium-ion batteries. Electrochim. Acta 75, 115–122 (2012)

    Article  CAS  Google Scholar 

  35. S.L. Chou, J.Z. Wang, J.Z. Sun, D. Wexler, F.M. Liu, H.K. Dou, S.X. Dou, High capacity, safety, and enhanced cyclability of lithium metal battery using a V2O5 nanomaterial cathode and room temperature ionic liquid electrolyte. Chem. Mater. 20, 7044–7051 (2008)

    Article  CAS  Google Scholar 

  36. D. Dastan, S.W. Gosavi, N.B. Chaure, Studies on electrical properties of hybrid polymeric gate dielectrics for field effect transistors. Macromol. Symp. 347, 81–86 (2015)

    Article  CAS  Google Scholar 

  37. S.L. Chou, J.Z. Wang, H.K. Liu, S.X. Dou, Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery. J. Phys. Chem. 115, 16220–16227 (2011)

    Article  CAS  Google Scholar 

  38. H. Ma, S. Zhang, W. Ji, Z. Tao, J. Chen, α-CuV2O6 nanowires: hydrothermal synthesis and primary lithium battery application. J. Am. Chem. Soc. 130, 5361–5367 (2008)

    Article  CAS  Google Scholar 

  39. X. Zhu, J. Yang, D. Dastan, H. Garmestani, R. Fan, Z. Shi, Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss. Composites Part A Appl Sci. Manuf. 125, 105521 (2019)

    Article  Google Scholar 

  40. X.T. Yin, W.D. Zhou, J. Li, Q. Wang, F.Y. Wu, D. Dastan, D. Wang, H. Garmestani, X.M. Wang, Ş. Ţălu, A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J. Alloys Compd. 805, 229–236 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Linqiao Liang and Mingwu Xiang contributed equally to this work. This work was financially supported by the project for the National Natural Science Foundation of China (51972282, 51462036, U1602273).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Bai or Junming Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Xiang, M., Bai, W. et al. Electrochemical properties and kinetics of Li–Cu co-doping LiMn2O4 cathode materials. J Mater Sci: Mater Electron 31, 286–297 (2020). https://doi.org/10.1007/s10854-019-02502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02502-7

Navigation