Skip to main content
Log in

The Classification of the Scenarios of Fast Combustion Wave Development and Deflagration-to-Detonation Transition in Channels

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

This work presents the review and classification of the scenarios of the development of the final stage of flame acceleration in channels and tubes including the transition to detonation on the flame front and formation of the conditions for kernel ignition ahead of the front. An approach to the numerical assessment of the detonability of combustible gaseous mixtures is formulated based on the classification of high-speed combustion modes proposed by the authors, and the general possibility of the practical application of such an approach is shown. The quantitative estimates of the critical conditions for the stable detonation formation as a result of flame acceleration and upon the transmission of the detonation wave, which are in agreement with the available published experimental data, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. M. Frolov, V. I. Zvegintsev, V. S. Ivanov, et al., Int. J. Hydrogen Energy 43, 7515 (2018).

    Article  CAS  Google Scholar 

  2. H. Zhang, W. Liu, and S. Liu, Int. J. Hydrogen Energy 42, 3363 (2017).

    Article  CAS  Google Scholar 

  3. J. Lee, R. Knystautas, and C. Chan, in Proceedings of the 20th International Symposium on Combustion (The Combust. Inst., Pittsburgh, PA, 1985), p. 1663.

  4. A. Kiverin and I. Yakovenko, Combust. Sci. Technol. 192, 112 (2020).

    Article  CAS  Google Scholar 

  5. S. M. Frolov, Russ. J. Phys. Chem. B 2, 442 (2008).

    Article  Google Scholar 

  6. S. P. Medvedev, A. N. Polenov, S. V. Khomik, and B. E. Gel’fand, Russ. J. Phys. Chem. B 4, 70 (2010).

    Article  Google Scholar 

  7. M. Kellenberger and G. Ciccarelli, Proc. Combust. Inst. 35, 2109 (2015).

    Article  CAS  Google Scholar 

  8. A. D. Kiverin and I. S. Yakovenko, Math. Model. Nat. Phenom. 13, 54 (2018).

    Article  CAS  Google Scholar 

  9. O. Peraldi, R. Knystautas, and J. Lee, in Proceedings of the 21st International Symposium on Combustion (The Combust. Inst., Pittsburgh, PA, 1988), p. 1629.

  10. M. Cross and G. Ciccarelli, J. Loss Prev. Process. Ind. 36, 380 (2015).

    CAS  Google Scholar 

  11. P. A. Urtiew and A. K. Oppenheim, Proc. R. Soc. London, Ser. A 295, 13 (1966).

    CAS  Google Scholar 

  12. S. Taki and T. Fujiwara, in Proceedings of the 13th International Symposium on Combustion (The Combust. Inst., Pittsburgh, PA, 1971), p. 1119.

  13. E. Dzieminska and A. K. Hayashi, Int. J. Hydrogen Energy 38, 4185 (2013).

    Article  CAS  Google Scholar 

  14. A. D. Kiverin and I. S. Yakovenko, Phys. Rev. Fluids 3, 053201 (2018).

    Article  Google Scholar 

  15. N. N. Smirnov and M. V. Tyurnikov, Combust. Flame 100, 661 (1996).

    Article  Google Scholar 

  16. V. I. Alekseev, M. S. Kuznetsov, Yu. G. Yankin, and S. B. Dorofeev, J. Loss Prev. Process. Ind. 14, 591 (2001).

    Article  Google Scholar 

  17. A. D. Kiverin, I. S. Yakovenko, and M. F. Ivanov, Int. J. Hydrogen Energy 41, 22465 (2016).

    Article  CAS  Google Scholar 

  18. J. Kurylo, H. A. Dwyer, and A. K. Oppenheim, AIAA J. 18, 302 (1980).

    Article  Google Scholar 

  19. B. Deshaies and G. Joulin, Combust. Flame 77, 201 (1989).

    Article  CAS  Google Scholar 

  20. Y. Zeldovich, Combust. Flame 39, 219 (1980).

    CAS  Google Scholar 

  21. M. Kuznetsov, J. Yanez, and J. Grune, in Proceedings of the 30th International Symposium on Shock Waves (Springer, New York, 2017), Vol. 1, p. 385. https://doi.org/10.1007/978-3-319-46213-4_65

  22. M. A. Liberman, M. F. Ivanov, A. D. Kiverin, et al., Acta Astronaut. 67, 688 (2010).

    CAS  Google Scholar 

  23. G. K. Adams and D. C. Pack, in Proceedings of the 7th International Symposium on Combustion (The Combust. Inst., Pittsburgh, PA, 1958), p. 812.

  24. V. I. Manzhalei, Fiz. Goreniya Vzryva 28 (3), 93 (1992).

    CAS  Google Scholar 

  25. Y. Wu, Q. Zheng, and C. Weng, Energy 143, 554 (2018).

    Article  CAS  Google Scholar 

  26. S. Khomik, B. Veyssiere, S. Medvedev, et al., Shock Waves 22 (2012).

  27. J. Li, W. H. Lai, K. Chung, and F. K. Lu, Combust. Flame 154, 331 (2008).

    Article  Google Scholar 

  28. M. Silvestrini, B. Genova, G. Parisi, et al., J. Loss Prev. Process. Ind. 21, 555 (2008).

    Article  CAS  Google Scholar 

  29. A. Keromnes, W. K. Metcalfe, K. A. Heufer, et al., Combust. Flame 160, 995 (2013).

    Article  CAS  Google Scholar 

  30. G. P. Smith, D. M. Golden, M. Frenklach, et al., http://www.me.berkeley.edu/gri_mech/.

  31. A. A. Vasil’ev, Combust. Explos., Shock Waves 48, 269 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Kiverin.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiverin, A.D., Smygalina, A.E. & Yakovenko, I.S. The Classification of the Scenarios of Fast Combustion Wave Development and Deflagration-to-Detonation Transition in Channels. Russ. J. Phys. Chem. B 14, 607–613 (2020). https://doi.org/10.1134/S1990793120040168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120040168

Keywords:

Navigation