Skip to main content
Log in

Acceleration of the Flame in a Smooth Channel and Detonation Transition

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

In the work, the authors have presented a systematization of the data on acceleration of the flame in a smooth channel filled with gaseous fuel mixture. A mixture of acetylene and oxygen, for which novel experimental and calculation- theoretical investigations have been carried out, was selected as an example of the fuel mixture. On the basis of comprehensive analysis, the authors have described in detail all stages of development of the process, including the initial stage of exponential acceleration of the flame, the stage of restructuring of the flame front accompanied by its retardation, the resumption of flame acceleration, and the creation of conditions for detonation transition. It has been demonstrated that of paramount importance in the development of each stage are hydrodynamic processes determining, in particular, the behavior of the flame in the flow formed in the channel and its acceleration and the compression of the fuel mixture, which is coordinated with it. This leads to the creation of conditions for the formation of detonation. Importantly, the carried-out calculations reproduce, at a qualitative level, all stages of development of the flame, and a parametric analysis of conditions for the transition to detonation quantitatively predicts, with a good degree of accuracy, the critical detonation-transition conditions determined experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Abe, A. Popoola, E. Ajenifuja, and O. Popoola, Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrogen Energy, 44, Issue 29, 15072–15086 (2019).

    Article  Google Scholar 

  2. Z. Liu, Y. Li, G. Yang, and W. Wang, Development path of China's gas power industry under the background of lowcarbon transformation, Natural Gas Industry B, 8, Issue 6, 576–587 (2021).

    Article  Google Scholar 

  3. M. S. Assad and O. G. Penyazkov, Distinctive features of operation of an internal combustion engine running on hydrogen-containing fuels, J. Eng. Phys. Thermophys., 83, No. 4, 869–875 (2010).

    Article  Google Scholar 

  4. V. S. Ivanov, S. M. Frolov, A. E. Zangiev, V. I. Zvegintsev, and I. O. Shamshin, Updated conceptual design of hydrogen/ethylene fueled detonation ramjet: Test fires at Mach 1.5, 2.0, and 2.5, Aerospace Sci. Technol., 126, Article ID 107602 (2022).

  5. M. S. Assad, V. V. Leshchevich, V. N. Mironov, O. G. Penyazkov, K. L. Sevruk, and A. V. Skilond′, Burning of hydrogeneous mixtures in the model of an internal-combustion-engine chamber, J. Eng. Phys. Thermophys., 82, No. 6, 1042–1058 (2009).

    Article  Google Scholar 

  6. A. Yu. Krainov and K. M. Moiseeva, Modeling of the combustion of a methane–air mixture in an enclosed spherical volume, J. Eng. Phys. Thermophys., 91, No. 4, 918–924 (2018).

    Article  Google Scholar 

  7. A. E. Smygalina, A. D. Kiverin, V. M. Zaichenko, and A. I. Tsyplakov, On the efficiency of utilization of hydrogen and syngas in a spark-ignition engine, J. Eng. Phys. Thermophys., 95, No. 1, 168–176 (2022).

    Article  Google Scholar 

  8. N. N. Smirnov and V. F. Nikitin, Modeling and simulation of hydrogen combustion in engines, Int. J. Hydrogen Energy, 39, Issue 2, 1122–1136 (2014).

    Article  Google Scholar 

  9. N. Smirnov, V. Betelin, V. Nikitin, Y. Phylippov, and J. Koo, Detonation engine fed by acetylene–oxygen mixture, Acta Astronaut., 104, Issue 1, 134–146 (2014).

    Article  Google Scholar 

  10. N. N. Smirnov, V. F. Nikitin, L. I. Stamov, E. V. Mikhalchenko, and V. V. Tyurenkova, Three-dimensional modeling of rotating detonation in a ramjet engine, Acta Astronaut., 163 (A), 168–176 (2019).

  11. A. A. Shtertser, V. Yu. Ul′yanitskii, I. S. Batraev, D. K. Rybin, D. V. Dudina, and Ya. L. Luk′yanov, Metal coatings reinforced by nanosize detonation carbon, in: Powder Metallurgy: Surface Engineering, Novel Composite Materials. Welding [in Russian], Izd. Dom "Belorusskaya Nauka," Minsk (2021), pp. 307–312.

  12. I. S. Yakovenko and A. D. Kiverin, Micro-particles spraying via non-stationary flame acceleration process, Acta Astronaut., 181, 620–632 (2021).

    Article  Google Scholar 

  13. H. D. Ng and J. Lee, Comments on explosion problems for hydrogen safety, J. Loss Prev. Process Ind., 21, Issue 2, 136–146 (2008).

    Article  Google Scholar 

  14. D. Ran, J. Cheng, R. Zhang, Y. Wang, and Y. Wu, Damages of underground facilities in coal mines due to gas explosion shock waves: an overview, Shock Vibr., 2021, 1–11 (2021).

    Article  Google Scholar 

  15. Mitigation of hydrogen hazards in severe accidents in nuclear power plants, Tech. Rep. No. IAEA-TECDOC-1661, International Atomic Energy Agency, Vienna (2011).

  16. A. G. Venetsanos, T. Huld, P. Adams, and J. G. Bartzis, Source, dispersion and combustion modelling of an accidental release of hydrogen in an urban environment, J. Hazard. Mater., 105, Issues 1–3, 1–25 (2003).

    Article  Google Scholar 

  17. V. P. Efremov, M. F. Ivanov, A. D. Kiverin, and A. V. Utkin, Shock-wave dynamics during oil-filled transformer explosions, Shock Waves, 27, Issue 3, 517–522 (2017).

    Article  Google Scholar 

  18. M. Saif, W. Wang, A. Pekalski, M. Levin, and M. I. Radulescu, Chapman–Jouguet deflagrations and their transition to detonation, Proc. Combust. Inst., 36, Issue 2, 2771–2779 (2017).

    Article  Google Scholar 

  19. A. Kiverin, I. Yakovenko, and M. Ivanov, On the structure and stability of supersonic hydrogen flames in channels, Int. J. Hydrogen Energy, 41, Issue 47, 22465–22478 (2016).

    Article  Google Scholar 

  20. P. A. Urtiew and A. K. Oppenheim, Experimental observations of the transition to detonation in an explosive gas, Proc. Res. Soc. A, 295, Issue 1440, 13–28 (1966).

    Google Scholar 

  21. G. D. Salamandra, T. V. Bazhenova, and I. M. Naboko, Formation of detonation wave during combustion of gas in combustion tube, Proc. Combust. Inst., 7, Issue 1, 851–855 (1958).

    Article  Google Scholar 

  22. M. Kuznetsov, V. Alekseev, I. Matsukov, and S. Dorofeev, DDT in a smooth tube filled with a hydrogen–oxygen mixture, Shock Waves, 14, Issue 3, 205–215 (2005).

    Article  Google Scholar 

  23. P. Krivosheyev, O. Penyazkov, and A. Sakalou, Analysis of the final stage of flame acceleration and the onset of detonation in a cylindrical tube using high-speed stereoscopic imaging, Combust. Flame, 216, 146–160 (2020).

    Article  Google Scholar 

  24. N. N. Smirnov and M. V. Tyurnikov, Experimental investigation of deflagration to detonation transition in hydrocarbon–air gaseous mixtures, Combust. Flame, 100, Issue 4, 661–668 (1995).

    Article  Google Scholar 

  25. N. N. Smirnov, V. F. Nikitin, and Yu. G. Phylippov, Deflagration-to-detonation transition in gases in tubes with cavities, J. Eng. Phys. Thermophys., 83, No. 6, 1287–1316 (2010).

    Article  Google Scholar 

  26. S. Taki and T. Fujiwara, One-dimensional nonsteady processes accompanied by the establishment of self-sustained detonation, Symp. (Int.) Combust., 13, Issue 1, 1119–1129 (1971).

  27. E. Dzieminska and A. K. Hayashi, Auto-ignition and DDT driven by shock wave–boundary layer interaction in oxyhydrogen mixture, Int. J. Hydrogen Energy, 38, Issue 10, 4185–4193 (2013).

    Article  Google Scholar 

  28. M. F. Ivanov, A. D. Kiverin, M. A. Liberman, and V. E. Fortov, Mechanism of acceleration of the flame and detonation transition of a hydrogen–oxygen mixture in the channel, Dokl. Ross. Akad. Nauk, 434, No. 6, 756–759 (2010).

    Google Scholar 

  29. S. V. Khomik, S. P. Medvedev, and B. E. Gel′fand, Initiation of explosive processes in hydrogen-containing gas mixtures by a multijet flow of detonation products, Fiz. Goreniya Vzryva, 46, No. 1, 54–59 (2010).

    Google Scholar 

  30. L. Kagan and G. Sivashinsky, On the transition from deflagration to detonation in narrow tubes, Flow Turbul. Combust., 84, No. 3, 423–437 (2010).

    Article  Google Scholar 

  31. P. Clavin, Finite-time singularity associated with the deflagration-to-detonation transition on the tip of an elongated flame-front in a tube, Combust. Flame, 245, Article ID 112347 (2022).

  32. A. D. Kiverin, I. S. Yakovenko, Estimation of critical conditions for deflagration-to-detonation transition in obstructed channels filled with gaseous mixtures, Math. Model. Natur. Phenom., 13, Issue 6, Article ID 54 (2018).

  33. A. D. Kiverin and I. S. Yakovenko, Regimes of high-speed hydrogen flame propagation in channels: Classification and criteria of realization, Combust. Sci. Technol., 192, Issue 1, 1–18 (2018).

    Google Scholar 

  34. A. D. Kiverin, A. E. Smygalina, and I. S. Yakovenko, Classification of the scenarios of development of fast combustion and of deflagration-to-detonation transition in channels, Khim. Fiz., 39, No. 8, 9–15 (2020).

    Google Scholar 

  35. C. Clanet and G. Searby, On the "tulip flame" phenomenon, Combust. Flame, 105, Issues 1–2, 225–238 (1996).

    Article  Google Scholar 

  36. L. N. Pyatnitskii, Flame propagation and acoustics, Fiz. Goreniya Vzryva, 55, No. 6, 3–13 (2019).

    Google Scholar 

  37. Ya. B. Zel′dovich, On the theory of the onset of detonation in gases, Zh. Tekh. Fiz., 17, No. 1, 3–26 (1947).

    Google Scholar 

  38. A. D. Kiverin and I. S. Yakovenko, Evolution of wave patterns and temperature field in shock-tube flow, Phys. Rev. Fluids, 3, Issue 5, Article ID 053201 (2018).

  39. Kenneth K. Kuo, Principles of Combustion, 2nd edn., Wiley-Interscience, New Jersey (2005).

    Google Scholar 

  40. M. A. Liberman, A. D. Kiverin, and M. F. Ivanov, Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models, Phys. Rev. E, 85, Issue 5, Article ID 056312 (2012).

  41. V. Bykov, A. Kiverin, A. Koksharov, and I. Yakovenko, Analysis of transient combustion with the use of contemporary CFD techniques, Comput. Fluids, 194, Article ID 104310 (2019).

  42. S. Karabasov and V. Goloviznin, Compact accurately boundary-adjusting high-resolution technique for fluid dynamics, J. Comput. Phys., 228, Issue 19, 7426–7451 (2009).

    Article  MathSciNet  Google Scholar 

  43. I. S. Yakovenko, A. V. Yarkov, A. V. Tyrnin, et al., Evaluation of the capabilities of modern kinetic mechanisms of acetylene oxidation for simulating nonstationary combustion processes, Vestn. MGTU im. N. É. Baumana, 104, No. 5, 62–85 (2022); doi: https://doi.org/10.18698/1812-3368-2022-5-62-85.

    Article  Google Scholar 

  44. E. Rokni, A. Moghaddas, O. Askari, et al., Measurement of laminar burning speeds and investigation of flame stability of acetylene (C2H2)/air mixtures, J. Energy Resour. Technol., 137, Issue 1, Article ID 012204 (2015).

  45. A. M. Tereza, V. G. Slutskii, and E. S. Severin, Ignition of acetylene–oxygen mixtures behind shock waves, Russ. J. Phys. Chem. B, 3, Issue 1, 99–108 (2009).

    Article  Google Scholar 

  46. A. M. Tereza, G. L. Agafonov, A. S. Betev, and S. P. Medvedev, Reduction of the detailed kinetic mechanism for efficient simulation of ignition delay for mixtures of methane and acetylene with oxygen, Russ. J. Phys. Chem. B, 14, Issue 6, 951–958 (2020).

    Article  Google Scholar 

  47. B. N. Varatharajan and F. A. Williams, Chemical-kinetic descriptions of high-temperature ignition and detonation of acetylene–oxygen–diluent systems, Combust. Flame, 124, Issue 4, 624–645 (2001).

    Article  Google Scholar 

  48. A. D. Kiverin, A. V. Turnin, and I. S. Yakovenko, Scalability of flame propagation in a channel, Russ. J. Phys. Chem. B, 15, Issue 6, 984–988 (2021).

    Article  Google Scholar 

  49. I. Yakovenko, A. Kiverin, P. Krivosheyev, V. Kuzmitski, A. Navitski, O. Penyazkov, A. Tyurnin, and A. Yarkov, Burning rate estimation based on flame evolution in a channel, Acta Astronaut., 204, 768–775 (2023).

    Article  Google Scholar 

  50. M. F. Ivanov, A. D. Kiverin, I. S. Yakovenko, and M. A. Liberman, Hydrogen–oxygen flame acceleration and deflagration-to-detonation transition in three-dimensional rectangular channels with no-slip walls, Int. J. Hydrogen Energy, 38, Issue 36, 16427–16440 (2013).

    Article  Google Scholar 

  51. P. N. Krivosheyev, A. O. Novitski, and O. G. Penyazkov, Evolution of the reaction front shape and structure on flame acceleration and deflagration-to-detonation transition, Russ. J. Phys. Chem. B, 16, Issue 4, 661–669 (2022).

    Article  Google Scholar 

  52. P. Krivosheyev, A. Novitski, and O. Penyazkov, Flame front dynamics, shape and structure on acceleration and deflagration-to-detonation transition, Acta Astronaut., 204, 692–704 (2023).

    Article  Google Scholar 

  53. P. N. Krivosheyev and O. G. Penyazkov, On the initial stage of combustion of acetylene–oxygen mixtures in a tube, Khim. Fiz., 42, No. 3, 30–35 (2023).

    Google Scholar 

  54. M. F. Ivanov, A. D. Kiverin, and M. A. Liberman, Hydrogen–oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model, Phys. Rev. E, 83, Article ID 056313 (2011).

  55. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. VI. Hydrodynamics [in Russian], 4th edn., stereotype, Nauka, Moscow (1988).

  56. Y. K. Troshin, The generalized Hugoniot adiabatic curve, Symp. (Int.) Combust., 7, Issue 1, 789–798 (1958).

  57. M. Silvestrini, B. Genova, G. Parisi, and F. Leon Trujillo, Flame acceleration and DDT run-up distance for smooth and obstacles filled tubes, J. Loss Prev. Process Ind., 21, Issue 5, 555–562 (2008).

  58. G. Ciccarelli and S. Dorofeev, Flame acceleration and transition to detonation in ducts, Prog. Energy Combust. Sci., 34, Issue 4, 499–550 (2008).

    Article  Google Scholar 

  59. Y. A. Baranyshyn, P. N. Krivosheyev, O. G. Penyazkov, et al., Flame front dynamics studies at deflagration-todetonation transition in a cylindrical tube at low-energy initiation mode, Shock Waves, 30, Issue 7, 305–313 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Krivosheyev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 96, No. 7, pp. 1803–1815, November–December, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiverin, A.D., Krivosheyev, P.N., Novitskii, A.O. et al. Acceleration of the Flame in a Smooth Channel and Detonation Transition. J Eng Phys Thermophy 96, 1769–1781 (2023). https://doi.org/10.1007/s10891-023-02847-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-023-02847-1

Keywords

Navigation