Skip to main content
Log in

DFT Study of CN Oxidation (CN + ½O2 → OCN) on the Surfaces of Chromium-Doped Nanotubes (Cr–CNT (8, 0) and Cr–BNNT (8, 0))

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The Cr–carbon nanotubes and Cr–boron nitride nanotubesas novel catalysts were used to find out the details of mechanisms of CN oxidation. The oxidation of CN molecule can process via Cr–CNT and Cr–BNNT catalysts through the Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms. The CN molecule joins to Cr atom and Cr–surface–\({\text{O}}_{2}^{*}\) and Cr–surface–O* are created as important intermediate structures with low barrier energies. The cis-Cr–surface–OCNO* complex according to ER mechanisms more stable than four-elements–ring complex in LH mechanism, approximately 0.09 and 0.11 eV, respectively. In LH pathway, total activity was bounded by irretrievable adsorption of OCN molecules in Cr atom of Cr–CNT and Cr–BNNT. In ER pathway, two OCN molecules are released at normal temperature. The catalytic capabilities of Cr–CNT and Cr–BNNT to oxidation of CN molecule were demonstrated in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Yu. N. Shebeko, V. V. Azatyan, I. A. Bolodyan, et al., Combust. Flame 121, 542 (2000).

    Article  CAS  Google Scholar 

  2. A. Drakon and A. Eremin, Combust. Flame 162, 2746 (2015).

    Article  CAS  Google Scholar 

  3. J. L. Pagliaro, G. T. Linteris, and P. T. Baker, Combust. Flame 162, 41 (2015).

    Article  CAS  Google Scholar 

  4. V. I. Babushok, G. T. Linteris, and P. T. Baker, Combust. Flame 162, 1104 (2015).

    Article  CAS  Google Scholar 

  5. G. Linteris, P. Sunderland, V. R. Katta, and O. Meier, Proc. Combust. Inst. 34, 2683 (2013).

    Article  CAS  Google Scholar 

  6. Ya. A. Lisochkin and V. I. Poznyak, Combust. Explos. Shock Waves 37, 32 (2001).

    CAS  Google Scholar 

  7. V. I. Babushok, G. T. Linteris, and O. C. Meier, Combust. Flame 159, 3569 (2012).

    Article  CAS  Google Scholar 

  8. V. S. Arutyunov, Russ. J. Gen. Chem. 54, 3 (2010).

    CAS  Google Scholar 

  9. V. S. Arutyunov, J. Nat. Gas Chem. 13, 10 (2004).

    CAS  Google Scholar 

  10. E. V. Sheverdenkin, and V. M. Rudakov, Theor. Found. Chem. Eng. 38, 311 (2004).

    Article  CAS  Google Scholar 

  11. V. S. Arutyunov, V. I. Savchenko et al., Theor. Found. Chem. Eng. 39, 487 (2005).

    Article  CAS  Google Scholar 

  12. V. I. Bykov, N. V. Kiselev, and S. B. Tsybenova, Dokl. Chem. 421, 161 (2008).

    Article  CAS  Google Scholar 

  13. O. E. Leshakov and E. A. Mamash, Sib. Zh. Ind. Mat. 15 (3), 70 (2012).

    Google Scholar 

  14. O. E. Leshakov and M. P. Krasil’nikov, Sib. Zh. Ind. Mat. 16 (3), 116 (2013).

    Google Scholar 

  15. V. Ya. Basevich and S. M. Frolov, Russ. J. Phys. Chem. B 7, 161 (2013).

    Article  CAS  Google Scholar 

  16. V. Ya. Basevich and S. M. Frolov, Russ. J. Phys. Chem. B 9, 268 (2015).

    Article  CAS  Google Scholar 

  17. V. Ya. Basevich, S. N. Medvedev, and S. M. Frolov, Russ. J. Phys. Chem. B 9, 933 (2015).

    Article  CAS  Google Scholar 

  18. S. Medvedev, V. S. Posvyanskii, and S. M. Frolov, Russ. J. Phys. Chem. B 10, 801 (2016).

    Article  CAS  Google Scholar 

  19. S. S. Sergeev, S. M. Frolov, and B. Basara, Gorenie Vzryv 10 (2), 26 (2017).

    Google Scholar 

  20. S. M. Frolov, V. Ya. Basevich, and S. N. Medvedev, Dokl. Phys. Chem. 470, 150 (2016).

    Article  CAS  Google Scholar 

  21. V. S. Posvyanskii, F. S. Frolov, and S. M. Frolov, Russ. J. Phys. Chem. B 4, 995 (2010).

    Article  Google Scholar 

  22. V. Ya. Basevich and S. M. Frolov, Russ. J. Phys. Chem. B 4, 985 (2010).

    Article  Google Scholar 

  23. V. Ya. Basevich, F. S. Frolov, B. Basara, and P. Prishing, Combust. Explos. Shock Waves 9, 36 (2016).

    Google Scholar 

  24. S. M. Frolov and F. S. Frolov, Russ. J. Phys. Chem. B 12, 245 (2018).

    Article  CAS  Google Scholar 

  25. H. Machrafi and S. Cavadias, Combust. Flame 155, 557 (2008).

    Article  CAS  Google Scholar 

  26. V. Ya. Basevich and S. M. Frolov, Russ. J. Phys. Chem. B 7, 161 (2013).

    Article  CAS  Google Scholar 

  27. V. Ya. Basevich and S. M. Frolov, Russ. J. Phys. Chem. B 9, 268 (2015).

    Article  CAS  Google Scholar 

  28. V. Ya. Basevich and S. M. Frolov, Russ. J. Phys. Chem. B 9, 933 (2015).

    Article  CAS  Google Scholar 

  29. M. A. Oehlschlaeger and R. K. Hanson, Int. J. Chem. Kinet. 36, 67 (2004).

    Article  CAS  Google Scholar 

  30. A. J. Cohen, P. Mori-Sánchez, and W. Yang, Chem. Rev. 112, 289 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. E. G. Hohenstein, and S. T. Chill, J. Chem. Theory Comput. 4, 1996 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. K. E. Riley, M. Pitoňák, P. Jurečka, and P. Hobza, Chem. Rev. 110, 5023 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. L. Ferrighi, Y. Pan, H. Grönbeck, and B. Hammer, J. Phys. Chem. C 116, 7374 (2012).

    Article  CAS  Google Scholar 

  34. N. Mardirossian and M. Head-Gordon, J. Chem. Theory Comput. 9, 4453 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. L. Goerigk, J. Phys. Chem. Lett. 6, 3891 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. N. Mardirossian and M. Head-Gordon, J. Chem. Theory Comput. 12, 4303 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. E. DeCarlos and J. G. Ángyán, J. Chem. Phys. 145, 124105 (2016).

    Article  CAS  Google Scholar 

  38. P. Kasper, J. Phys. Chem. A 121, 2022 (2017).

    Article  CAS  Google Scholar 

  39. G. Michael and I. S. Bushmarinov, Science (Washington, DC, U. S.) 355, 49 (2017).

    Article  CAS  Google Scholar 

  40. V. G. Ruiz, W. Liu, E. Zojer, and A. Tkatchenko, Phys. Rev. Lett. 108, 146103 (2012).

    Article  PubMed  CAS  Google Scholar 

  41. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).

    Article  CAS  Google Scholar 

  42. Y. Huang, C. J. Sung, and J. A. Eng, Combust. Flame 139, 239 (2004).

    Article  CAS  Google Scholar 

  43. K. Kumar, J. E. Freeh, C. J. Sung, and Y. Huang, J. Propuls. Power 23, 428 (2007).

    Article  CAS  Google Scholar 

  44. V. Ya. Basevich, A. A. Belyaev, and S. M. Frolov, Russ. J. Phys. Chem. B 4, 995 (2010).

    Article  Google Scholar 

  45. J. R. Yang, C. Y. Yukao, J. J. Whang, and S.-C. Wong, Combust. Flame 123, 266 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Najafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, M.A., Liu, Z. & Najafi, M. DFT Study of CN Oxidation (CN + ½O2 → OCN) on the Surfaces of Chromium-Doped Nanotubes (Cr–CNT (8, 0) and Cr–BNNT (8, 0)). Russ. J. Phys. Chem. B 14, 217–221 (2020). https://doi.org/10.1134/S1990793120020189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120020189

Keywords:

Navigation