Russian Journal of Physical Chemistry B

, Volume 12, Issue 7, pp 1112–1119 | Cite as

Luminescent Composites Based on Tetrafluoroethylene Copolymer Porous Films Produced by the Diffusion Embedding of Semiconductor Nanoparticles in a Supercritical Medium

  • A. O. RybaltovskiiEmail author
  • V. M. Buznik
  • Yu. S. Zavorotny
  • P. S. Timashev
  • S. N. Churbanov
  • V. N. Bagratashvili


A method for creating film composites based on a new material—a fibrous copolymer of tetrafluoroethylene and vinylidene fluoride—using the diffusion embedding of ready-made nanoparticles into a porous matrix in a supercritical (SC) carbon dioxide medium is developed. The method of cold or hot pressing of impregnated porous films was used at the final stage of creation of such composites. The peculiarities of the effect of the supercritical fluid treatment of porous copolymer films on the surface structure of pressed films are discussed. Luminescent composites with semiconductor nanoparticles of cadmium selenide and nanocrystalline silicon are obtained; their radiation covers a range of 500–1000 nm. The change in the luminescence properties of the resulting nanocomposites under the action of excitation laser radiation at 405 nm is demonstrated.


film composite cadmium selenide nanocrystalline silicon diffusion embedding luminescent properties fibrous matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nanosilicon, Ed. by V. Kumar (Elsevier, Amsterdam, 2008).Google Scholar
  2. 2.
    Nanostructured Materials. Processing, Properties and Applications, Ed. by C. C. Koch (William Andrew, New York, 2009).Google Scholar
  3. 3.
    Biorelated Polymers and Gels, Ed. by T. Okano (Academic, San Diego, 1998).Google Scholar
  4. 4.
    D. Bera, L. Qian, T-K. Tseng, and P. H. Holloway, Materials 3, 2260 (2010).CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Y. He, C. Fan, and P. H. Lee, Nano Today 5, 282 (2010).CrossRefGoogle Scholar
  6. 6.
    R. N. Khramov, I. M. Santalova, L. I. Fakhranurova, A. A. Manokhin, N. B. Simonova, D. I. Rzhevsky, and A. N. Murashev, Biophysics 55, 447 (2010).CrossRefGoogle Scholar
  7. 7.
    A. B. Gapeev, L. I. Fakhranurova, S. I. Paskevich, A. A. Manokhin, S. V. Gudkov, N. B. Simonova, M. S. Vakshtein, and R. N. Khramov, Tekhnol. Zhiv. Sist., No. 6, 16 (2012).Google Scholar
  8. 8.
    O. E. Semonin, J. M. Luther, and M. C. Beard, Mater. Today 15, 508 (2012).CrossRefGoogle Scholar
  9. 9.
    V. N. Bagratashvili, M. S. Vakshtein, Yu. S. Zavorotnyi, L. I. Krotova, A. O. Manyashin, V. K. Popov, A. O. Rybaltovskii, I. I. Taraskina, and P. S. Timashev, Perspekt. Mater., No. 2, 39 (2010).Google Scholar
  10. 10.
    V. N. Bagratashvili, S. G. Dorofeev, A. A. Ischenko, V. V. Koltashev, N. N. Kononov, A. A. Krutikova, A. O. Rybaltovskii, and G. V. Fetisov, Russ. J. Phys. Chem. B 4, 1164 (2010).CrossRefGoogle Scholar
  11. 11.
    V. K. Popov, V. N. Bagratashvili, L. I. Krotova, A. O. Rybaltovskii, D. C. Smith, P. S. Timashev, J. Yang, Yu. S. Zavorotnyi, and S. M. Howdle, Green Chem. 3, 2696 (2011).CrossRefGoogle Scholar
  12. 12.
    A. O. Rybaltovskii, Yu. S. Zavorotnyi, N. V. Minaev, V. K. Popov, D. S. Rubashnaya, and P. S. Timashev, Russ. J. Phys. Chem. B 10, 1033 (2016).CrossRefGoogle Scholar
  13. 13.
    A. O. Rybaltovskii, Yu. S. Zavorotnyi, A. P. Sviridov, E. D. Feklichev, A. A. Ishchenko, and V. N. Bagratashvili, Nanotechnol. Russ. 10, 802 (2015).CrossRefGoogle Scholar
  14. 14.
    V. M. Buznik, Yu. M. Vol’fkovich, V. I. Gryaznov, O. V. Dvoretskaya, M. A. Smul’skaya, V. E. Sosenkin, P. S. Timashev, V. K. Ivanov, A. A. Fomkin, and G. Yu. Yurkov, Perspekt. Mater., No. 9, 59 (2015).Google Scholar
  15. 15.
    V. M. Buznik and V. G. Kuryavyi, Ross. Khim. Zh. 52 (3), 131 (2008).Google Scholar
  16. 16.
    V. N. Bagratashvili, S. G. Dorofeev, N. N. Kononov, G. V. Fetisov, and A. A. Ishchenko, Nanotekhnika 8 (4), 57 (2011).Google Scholar
  17. 17.
    A. A. Ishchenko, G. V. Fetisov, and L. A. Aslanov, Nanosilicon: Properties, Production, Application, Study and Control Methods (Fizmatlit, Moscow, 2014) [in Russian].CrossRefGoogle Scholar
  18. 18.
    A. A. Ischenko, Y. S. Zavorotny, A. V. Garschev, S. G. Dorofeev, N. N. Kononov, N. V. Minaev, S. A. Mnaeva, A. P. Sviridov, P. S. Timashev, I. I. Khodos, V. I. Yusupov, M. A. Lasov, V. Ya. Panchenko, and V. N. Bagratashvili, J. Mater. Sci. 50, 2247 (2015).CrossRefGoogle Scholar
  19. 19.
    S. G. Dorofeev, V. N. Bagratashvili, V. P. Dyatchenko, N. N. Kononov, A. O. Rybaltovskii, A. P. Sviridov, G. V. Fetisov, S. I. Tsypina, and A. A. Ishchenko, Nanotekhnika 9 (1), 79 (2012).Google Scholar
  20. 20.
    W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, and A. Meijerink, J. Phys. Chem. B 105, 8281 (2001).CrossRefGoogle Scholar
  21. 21.
    Y. Wang, Z. Tang, M. A. Correa-Duarte, I. Pastoriza-Santos, M. Giersig, N. A. Kotov, and L. M. J. Liz-Marzán, Phys. Chem. B 108, 15461 (2004).CrossRefGoogle Scholar
  22. 22.
    S. C. Sharma, J. Murphree, and T. Chakraborty, J. Lumin. 128, 1771 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. O. Rybaltovskii
    • 1
    Email author
  • V. M. Buznik
    • 2
  • Yu. S. Zavorotny
    • 1
  • P. S. Timashev
    • 3
    • 4
  • S. N. Churbanov
    • 3
  • V. N. Bagratashvili
    • 3
  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  2. 2.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Photonic Technologies, Federal Research Center “Crystallography and Photonics,”Russian Academy of SciencesMoscowRussia
  4. 4.Institute of Regenerative MedicineSechenov UniversityMoscowRussia

Personalised recommendations