Skip to main content
Log in

Synthesis of Film Nanocomposites under Laser Ablation and Drift Embedding of Nanoparticles into Polymer in Supercritical Carbon Dioxide

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A new approach to the formation of film nanocomposites based on combining the stage of nanoparticle synthesis by pulsed laser ablation in supercritical (SC) carbon dioxide and the stage of nanocomposite formation by the accelerated drift embedding of nanoparticles in SC-CO2 in one reactor and in a single technological process is proposed and implemented. Photoluminescent film nanocomposites based on a porous copolymer of polytetrafluoroethylene–vinylidene fluoride and ruby nanoparticles were obtained, and their properties are determined. The results of an analysis of the film nanocomposites using scanning electron microscopy showed that the dimensions of the ruby particles embedded in the polymer matrix reached hundreds of nanometers. The film composites were further subjected to hot pressing at a pressure of 20 MPa and a temperature of 160°C, which significantly improved their mechanical strength and transparency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Ajayan, L. S. Schadle, and P. V. Braun, Nanocomposite Science and Technology (Wiley, Chichester, 2006).

    Google Scholar 

  2. J. H. Koo, Polymer Nanocomposites (McGraw-Hill, New York, 2006).

    Google Scholar 

  3. Y. W. Mai and Z. Z. Yu, Polymer Nanocomposites (Woodhead, Cambridge, UK, 2006).

    Book  Google Scholar 

  4. F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, J. Compos. Mater. 40, 1511 (2006).

    Article  CAS  Google Scholar 

  5. Polymer Nanocomposites Handbook, Ed. by R. K. Gupta, E. Kennel, and K. J. Kim (CRC, Boca Raton, FL, 2009).

    Google Scholar 

  6. Physical Properties and Applications of Polymer Nanocomposites, Ed. by S. C. Tjong and Y. W. Mai (Elsevier, Amsterdam, 2010).

    Google Scholar 

  7. J. W. Rhim, H. M. Park, and C. S. Ha, Prog. Polym. Sci. 38, 1629 (2013).

    Article  CAS  Google Scholar 

  8. Y. Zare, Waste Manage. 33, 598 (2013).

    Article  CAS  Google Scholar 

  9. M. K. Hedayati, F. Faupel, and M. Elbahri, Materials 7, 1221 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Polymer Nanocomposites, Ed. by Y. W. Mai and Zh.-Zh. Yu (Woodhead, Cambridge, UK, 2006; Tekhnosfera, Moscow, 2011).

  11. S. Pina, J. M. Oliveira, and R. L. Reis, Adv. Mater. 27, 1143 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. J. W. Rhim, H. M. Park, and C. S. Ha, Prog. Polym. Sci. 38, 1629 (2013).

    Article  CAS  Google Scholar 

  13. W. K. Chee, H. N. Lim, N. M. Huang, and I. Harrison, RSC Adv. 5, 68014 (2015).

    Article  CAS  Google Scholar 

  14. V. Mittal, Macromol. Mater. Eng. 299, 906 (2014).

    Article  CAS  Google Scholar 

  15. C. Yang, H. Wei, L. Guan, J. Guo, Y. Wang, X. Yan, and Z. Guo, J. Mater. Chem. A 3, 14929 (2015).

    Article  CAS  Google Scholar 

  16. A. Karatrantos, N. Clarke, and M. Kröger, Polym. Rev. 56, 385 (2016).

    Article  CAS  Google Scholar 

  17. D. L. Tomasko, X. Han, D. Liu, and W. Gao, Curr. Opin. Solid State Mater. Sci. 7, 407 (2003).

    Article  CAS  Google Scholar 

  18. V. N. Bagratashvili, M. S. Vakshtein, Yu. S. Zavorotnyi, L. I. Krotova, A. O. Manyashin, V. K. Popov, A. O. Rybaltovskii, I. I. Taraskina, and P. S. Timashev, Perspekt. Mater., No. 2, 39 (2010).

    Google Scholar 

  19. V. N. Bagratashvili, S. G. Dorofeev, A. A. Ischenko, V. V. Koltashev, N. N. Kononov, A. A. Krutikova, A. O. Rybaltovskii, and G. V. Fetisov, Russ. J. Phys. Chem. B 4, 1164 (2010).

    Article  Google Scholar 

  20. A. O. Rybaltovskii, Yu. S. Zavorotnyi, A. P. Sviridov, E. D. Feklichev, A. A. Ishchenko, and V. N. Bagratashvili, Nanotechnol. Russ. 10, 802 (2015).

    Article  CAS  Google Scholar 

  21. A. O. Rybaltovskii, Yu. S. Zavorotnyi, N. V. Minaev, V. K. Popov, D. S. Rubashnaya, and P. S. Timashev, Russ. J. Phys. Chem. B 10, 1033 (2016).

    Article  CAS  Google Scholar 

  22. V. K. Popov, V. N. Bagratashvili, L. I. Krotova, A.O.Rybaltovskii, D. C. Smith, P. S. Timashev, J. Yang, Yu. S. Zavorotnyi, and S. M. Howdle, Green Chem. 3, 2696 (2011).

    Article  CAS  Google Scholar 

  23. A. V. Simakin, V. V. Voronov, N. A. Kirichenko, and G. A. Shafeev, Appl. Phys. A: Mater. Sci. Process. 79, 1127 (2004).

    Article  CAS  Google Scholar 

  24. G. W. Yang, Prog. Mater. Sci. 52, 648 (2007).

    Article  CAS  Google Scholar 

  25. Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials, Ed. by G. Yang (CRC, Boca Raton, FL, 2012).

  26. H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, Adv. Funct. Mater. 22, 1333 (2012).

    Article  CAS  Google Scholar 

  27. K.-I. Saitow, T. Yamamura, and T. J. Minami, Phys. Chem. C 112, 18340 (2008).

    Article  CAS  Google Scholar 

  28. S. Machmudah, Y. Kuwahara, M. Sasaki, and M. Goto, J. Supercrit. Fluids 60, 63 (2011).

    Article  CAS  Google Scholar 

  29. S. Wei and K. Saitow, Rev. Sci. Insrum. 83, 73110 (2012).

    Article  CAS  Google Scholar 

  30. N. V. Minaev, V. G. Arakcheev, A. O. Rybaltovskii, V. V. Firsov, and V. N. Bagratashvili, Russ. J. Phys. Chem. B 9, 1074 (2015).

    Article  CAS  Google Scholar 

  31. V. M. Buznik, Yu. M. Vol’fkovich, V. I. Gryaznov, O. V. Dvoretskaya, M. A. Smul’skaya, V. E. Sosenkin, P. S. Timashev, V. K. Ivanov, A. A. Fomkin, and G. Yu. Yurkov, Perspekt. Mater., No. 9, 59 (2015).

    Google Scholar 

  32. A. O. Rybaltovskii, V. M. Buznik, Yu. S. Zavorotnyi, P. S. Timashev, S. N. Churbanov, and V. N. Bagratashvili, Sverkhkrit. Fluidy Teor. Prakt. 12 (3), 1 (2014).

    Google Scholar 

  33. D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, Materials 3, 2260 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  34. Y. He, C. Fan, and P. H. Lee, Nano Today 5, 282 (2010).

    Article  CAS  Google Scholar 

  35. R. N. Khramov, I. M. Santalova, L. I. Fakhranurova, A. A. Manokhin, N. B. Simonova, D. I. Rzhevsky, and A. N. Murashev, Biophysics 55, 447 (2010).

    Article  Google Scholar 

  36. A. B. Gapeev, L. I. Fakhranurova, S. I. Paskevich, A. A. Manokhin, S. V. Gudkov, N. B. Simonova, M. S. Vakshtein, and R. N. Khramov, Tekhnol. Zhiv. Sist. 9 (6), 6 (2012).

    Google Scholar 

  37. O. E. Semonin, J. M. Luther, and M. C. Beard, Mater. Today 15, 508 (2012).

    Article  CAS  Google Scholar 

  38. T. Maiman, Nature (London, U.K.) 187, 493 (1960).

    Article  Google Scholar 

  39. O. Svelto, Principles of Lasers (Plenum, New York, 1976; Mir, Moscow, 1979).

    Book  Google Scholar 

  40. J. Lam, D. Amans, F. Chaput, M. Dioul, G. Ledoux, N. Mary, K. Masenelli-Verbot, V. Motto-Ros, and C. Dujardin, Phys. Chem. Chem. Phys. 16, 963 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. C. L. Sajti, R. Sattari, B. N. Chichkov, and S. Barcikowski, J. Phys. Chem. C 114, 2421 (2010).

    Article  CAS  Google Scholar 

  42. B. Kumar and R. K. Thareja, Phys. Status Solidi C 75, 1409 (2010).

    Article  CAS  Google Scholar 

  43. M. S. Baranov, A. A. Bardina, A. G. Savelyev, V. N. Khramov, and E. V. Khaydukov, Proc. SPIE 9917, 99171D (2016).

    Google Scholar 

  44. A. B. Kulinkin, S. P. Feofilov, and R. I. Zakharcheniya, Phys. Solid State 42, 835 (2000).

    Article  Google Scholar 

  45. A. E. Edmonds, A. Sobhan, V. Sreenivasan, E. Grebenik, J. Rabeau, E. Goldys, and A. Zvyagin, Part. Part. Syst. Characteriz. 30, 506 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Minaev.

Additional information

Original Russian Text © A.O. Rybaltovskii, V.M. Buznik, Yu.S. Zavorotny, N.V. Minaev, P.S. Timashev, S.N. Churbanov, B.N. Bagratashvili, 2017, published in Sverkhkriticheskie Flyuidy. Teoriya i Praktika, 2017, Vol. 12, No. 4, pp. 14–23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybaltovskii, A.O., Buznik, V.M., Zavorotny, Y.S. et al. Synthesis of Film Nanocomposites under Laser Ablation and Drift Embedding of Nanoparticles into Polymer in Supercritical Carbon Dioxide. Russ. J. Phys. Chem. B 12, 1160–1165 (2018). https://doi.org/10.1134/S1990793118070114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118070114

Keywords

Navigation