Skip to main content
Log in

Production and Applications of Spin-Polarized Isotopes of Noble Gases

  • Structure of Chemical Compounds. Spectroscopy
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The development of a new direction of research on the production and application of spin-polarized isotopes of noble gases, 3He and 129Xe, is overviewed. Methods of laser hyperpolarization, problems of enhancing the efficiency of laser energy input, and methods of storing hyperpolarized (HP) isotopes are described. Examples and advantages of using HP isotopes in fundamental physics, engineering, medicine, and biology, as well as the progress in the creation of biosensors on hyperpolarized noble gases, are discussed. It has been shown that the study of protein structures and host–guest molecular complexes can prove useful in searching for means of the targeted delivery of radioactive isotopes (radiopharmaceuticals) in nuclear medicine. It is concluded that the progress in modern technologies for producing miniature electronic devices is suggestive of an imminent emergence of small-size scanners for human brain research. At the same time, a high sensitivity of the method is expected to provide the possibility of studying not only the structure of tissues and bloodstream, but also the response of the brain to various stimuli, and even cognitive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Günther, NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry, 3rd ed. (Wiley, New York, 2013).

    Google Scholar 

  2. V. I. Bakhmutov, NMR Spectroscopy in Liquids and Solids (CRC, New York, 2015).

    Book  Google Scholar 

  3. J. Fisher, Modern NMR Techniques for Synthetic Chemistry (CRC, Boca Raton, FL, 2014).

    Book  Google Scholar 

  4. J. L. Markley, A. Bahrami, H. R. Eghbalnia, et al., in Structural Bioinformatics, Vol. 44 of Methods of Biochemical Analysis, Ed. by P. E. Bourne and H. Weissig (Wiley, New York, 2005), p.89.

  5. G. P. Sinyavskii, Yu. E. Chernysh, and M. G. Morozov, Elektromagn. Volny Elektron. Sist. 19 (9), 58 (2014).

    Google Scholar 

  6. F. A. Bovey and P. A. Mirau, NMR of Polymers (Academic, New York, 1996).

    Google Scholar 

  7. Solid State NMR Spectroscopy: Principles and Applications, Ed. M. J. Duer (Wiley, New York, 2001).

  8. K. H. Hausser and H. R. Kalbitzer, NMR in Medicine and Biology: Structure Determination, Tomography, in vivo Spectroscopy (Springer, Berlin, Heidelberg 1991; Naukova Dumka, Kiev, 1993).

    Google Scholar 

  9. R. Freeman, Magnetic Resonance in Chemistry and Medicine (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  10. K. Roth, NMR-Tomography and Spectroscopy in Medicine (Springer, Berlin, Heidelberg, 2012).

    Google Scholar 

  11. J. P. Hornak, The Basics of MRI (Rochester Inst. Technol., Rochester, 1996).

    Google Scholar 

  12. A. Kastler, J. Phys. (Paris) 11, 255 (1950). www.nobelprize.org/nobel_prizes/physics/laureates/1966/kastlerlecture. pdf.

    CAS  Google Scholar 

  13. W. Happer, E. Miron, S. Schaefer, et al., Phys. Rev. A 29, 3092 (1984).

    Article  CAS  Google Scholar 

  14. D. Raftery, H. Long, T. Meersmann, et al., Phys. Rev. Lett. 66, 584 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. M. S. Albert, G. D. Cates, B. Driehuys, et al., Nature (London, U.K.) 370 (6486), 199 (1994).

    Article  CAS  Google Scholar 

  16. G. Navon, Y.-Q. Song, T. Room, et al., Science (Washington, DC, U. S.) 271 (5257), 1848 (1996).

    Article  CAS  Google Scholar 

  17. T. G. Walker and W. Happer, Rev. Mod. Phys. 69, 629 (1997).

    Article  CAS  Google Scholar 

  18. S. Appelt and A. B-A. Baranga, C. J. Erickson, et al., Phys. Rev. A 58, 1412 (1998).

    Article  CAS  Google Scholar 

  19. A. Fitterman, PhD Thesis (Lakehead Univ., Orillia, Ontario, 2015).

  20. D. F. Phillips, G. P. Wong, D. Bear, et al., Rev. Sci. Instrum. 70, 2905 (1999).

    Article  CAS  Google Scholar 

  21. H.-T. J. Wang, PhD Thesis (School of Eng. Appl. Sci., Univ. of Virginia, Virginia, 2007).

  22. A. L. Zook, B. B. Adhyaru, and C. R. Bowers, J. Magn. Reson. 159, 175 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. F. W. Hersman, I. C. Ruset, S. Ketel, et al., Acad. Radiol. 15, 683 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. M. Repetto, E. Babcock, P. Blümler, et al., J. Magn. Reson. 252, 163 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. M. Repetto, S. Zimmer, F. Allmendinger, et al., J. Magn. Reson. 265, 197 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. E. Adamson, K. Ludwig, D. G. Mummy, and S. B. Fain, Phys. Med. Biol. 62, R81 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. H. Imai, H. Yoshimura, A. Kimura, and H. Fujiwara, Sci. Rep. 7, 7352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. I. I. Sobel’man and V. N. Sorokin, Phys. Usp. 48, 939 (2005). doi ABEH002506 doi 10.1070/PU200504809

    Article  CAS  Google Scholar 

  29. W. Heill, C. Gemmel, S. Karpuk, et al., Ann. Phys. (N.Y.) 525, 539 (2013).

    Article  CAS  Google Scholar 

  30. M. Bulatowicz, R. Griffith, M. Larsen, et al., Phys. Rev. Lett. 111, 102001 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. E. Weiland, M-A. Springuel-Huet, A. Nossov, et al., J. Phys. Chem. C 119, 15285 (2015).

    Article  CAS  Google Scholar 

  32. M. Mauri and R. Simonutti, Materials (Basel) 5, 1722 (2012).

    Article  CAS  Google Scholar 

  33. M. A. Springuel-Huet, J. L. Bonardet, A. Gedeon, and J. Fraissard, Langmuir 13, 1229 (1997).

    Article  CAS  Google Scholar 

  34. R. Jimenez-Martinez, D. Kennedy, M. Rosenbluh, et al., Nat. Commun. 5, 3908 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. J. W. Steed and J. L. Atwood, Supramolecular Chemistry, 2nd ed. (Wiley, New York, 2009).

    Book  Google Scholar 

  36. K. Ariga and T. Kunitake, Supramolecular Chemistry–Fundamentals and Applications (Springer, Berlin, Heidelberg, 2006).

    Google Scholar 

  37. E. Weber, Molecular Inclusion and Molecular Recognition: Clathrates (Springer, Berlin, Heidelberg, 1987).

    Book  Google Scholar 

  38. The Physics and Chemistry of Inorganic Clathrates, Ed. by G. S. Nolas (Springer, Dordrecht, 2014).

  39. L. Schroder, T. J. Lowery, C. Hilty, et al., Science (Washington, DC, U. S.) 314 (5798), 446 (2006).

    Article  CAS  Google Scholar 

  40. K. M. Ward, A. H. Aletras, and R. S. Balaban, J. Magn. Reson. 143, 79 (2000).

    Article  CAS  Google Scholar 

  41. T. Meldrum, K. Seim, V. Bajaj, et al., J. Am. Chem. Soc. 132, 5936 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. N. Khan, B. Riggle, G. Seward, et al., Bioconjugate Chem. 26, 101 (2015).

    Article  CAS  Google Scholar 

  43. Q. Wei, G. Seward, P. A. Hill, et al., J. Am. Chem. Soc. 128, 13274 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. A. Oregioni, N. Parizel, P. L. de Sousa, and D. Grucker, Magn. Reson. Med. 49, 1028 (2003).

    Article  PubMed  Google Scholar 

  45. T. K. Stevens, K. K. Palaniappan, R. M. Ramirez, et al., Magn. Reson. Med. 69, 1245 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. K. K. Palaniappan, R. M. Ramirez, V. S. Bajaj, et al., Angew. Chem., Int. Ed. Engl. 52, 4849 (2013).

    Article  CAS  Google Scholar 

  47. M. Kunth, C. Witte, and L. Schröder, J. Chem. Phys. 141, 194202 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. E. de Lange, J. Mugler, J. R. Brookeman, et al., Radiology 210, 851 (1999).

    Article  PubMed  Google Scholar 

  49. J. P. Mugler III and T. A. Altes, J. Magn. Reson. Imaging 37, 313 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. J. E. Roos, H. P. McAdams, S. Kaushik, and B. Driehuys, Magn. Reson. Imaging. Clin. North Am. 23, 217 (2015).

    Article  Google Scholar 

  51. B. T. Saam, D. A. Yablonskiy, V. D. Kodibagkar, et al., Magn. Reson. Med. 44, 174 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. B. Driehuys, G. P. Cofer, J. Pollaro, et al., Proc. Natl. Acad. Sci. U. S. A. 103, 18278 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. H. Moller, X. J. Chen, B. Saam, et al., Magn. Reson. Med. 47, 1029 (2002).

    Article  PubMed  Google Scholar 

  54. N. J. Stewart, G. Leung, G. Norquay, et al., Magn. Reson. Med. 74, 196 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. T. A. Altes, P. L. Powers, J. Knight-Scott, et al., J. Magn. Reson. Imaging 13, 378 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. S. B. Fain, F. R. Korosec, J. H. Holmes, et al., J. Magn. Reson. Imaging 25, 910 (2007).

    Article  PubMed  Google Scholar 

  57. B. M. Goodson, Y.-Q. Song, R. E. Taylor, et al., Proc. Natl. Acad. Sci. U. S. A. 94, 14725 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hyperpolarized 129Xe Magnetic Resonance: Concepts, Production, Techniques and Applications, Ed. by T. Meersmann and E. Brunner (Roy. Soc. of Chemistry, Cambridge, 2015).

  59. Hyperpolarized and Inert Gas MRI: From Technology to Application in Research and Medicine, Ed. by M. S. Albert and F. T. Hane (Elsevier, Amsterdam, 2017).

  60. W. Kilian, F. Seifert, and H. Rinneberg, Magn. Reson. Med. 51, 843 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. M. L. Mazzanti, R. P. Walvick, X. Zhou, et al., PLoS One 6, 21607 (2011).

    Article  CAS  Google Scholar 

  62. H. Imai, A. Kimura, K. Akiyama, et al., NMR Biomed. 25, 210 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. M. Schnurr, K. Sydow, H. M. Rose, et al., Adv. Healthc. Mater. 4, 40 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. D. Lilburn, G. E. Pavlovskaya, and T. Meersmann, J. Magn. Reson. 229, 173 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. M. Rao, N. J. Stewart, G. Norquay, P. D. Griffiths, and J. M. Wild, Magn. Reson. Med. 75, 2227 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. M. P. Augustine, A. Wong-Foy, J. L. Yarger, M. Tomaselli, and A. Pines, Appl. Phys. Lett. 72, 1908 (1998).

    Article  CAS  Google Scholar 

  67. G. Wong, C. H. Tseng, V. Pomeroy, et al., J. Magn. Reson. 141, 217 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. A. Wong-Foy, S. Saxena, A. Moulé, et al., J. Magn. Reson. 157, 235 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. A. K. Venkatesh, A. X. Zhang, J. Mansour, et al., Magn. Reson. Imaging 21, 773 (2003).

    Article  PubMed  Google Scholar 

  70. C. Tseng, G. P. Wong, V. R. Pomeroy, et al., Phys. Rev. Lett. 81, 3785 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. E. Durand, G. Guillot, L. Darrasse, et al., Magn. Reson. Med. 47, 75 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. M. W. Vogel, V. Vegh, and D. C. Reutens, Med. Phys. 40, 052301 (2013).

    Article  PubMed  Google Scholar 

  73. J. B. West, J. Appl. Physiol. 93, 1888 (2002).

    Article  PubMed  Google Scholar 

  74. I. C. Ruset, PhD Thesis (Univ. New Hampshire, New Hampshire, 2005).

  75. C. Shah and M. Bradshaw, Nuclear Medicine (Lippincott Williams and Wilkins, Philadelphia, 2015).

    Google Scholar 

  76. J. Prekege, Nuclear Medicine Instrumentation, 2nd ed. (Jones and Barlett, Burlington, MA, 2012).

    Google Scholar 

  77. Positron Emission Tomography: Current Clinical and Research Aspects, Ed. by C-H. Hsieh (InTech, Rijeka, Croatia, 2012.

  78. Positron Emission Tomography, Ed. by B. K. Das (Springer, New Delhi, 2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Yu. Grigor’ev.

Additional information

Original Russian Text © G.Yu. Grigor’ev, Sh.Sh. Nabiev, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 5, pp. 3–18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’ev, G.Y., Nabiev, S.S. Production and Applications of Spin-Polarized Isotopes of Noble Gases. Russ. J. Phys. Chem. B 12, 363–377 (2018). https://doi.org/10.1134/S1990793118030107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118030107

Keywords

Navigation